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A THEORETICAL STUDY OF THE UNDERESTIMATION
OF BRANCH LENGTHS BY THE MAXIMUM
PARSIMONY PRINCIPLE

NARUYA SAITOU

Department of Anthropology, Faculty of Science, The University of Tokyo,
Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract.—The degree of underestimation of branch lengths by the maximum parsimony prin-
ciple is studied. The expected number of nucleotide changes per site under the maximum
parsimony principle is computed, and it is compared with the expected number of nucleotide
substitutions. A tree topology with no hierarchical structure is considered for mathematical
simplicity. It is shown that as long as the evolutionary distance is less than 0.2, the maximum
parsimony principle gives good estimates of nucleotide substitutions. When the evolutionary
distance is greater than 0.2, however, the method gives gross underestimates of nucleotide
substitutions. [Branching; parsimony; phylogenetics; topology.]

There are two major problems in con-
structing a phylogenetic tree from molec-
ular data. One is the determination of the
topology of a tree and the other is the es-
timation of branch lengths. For the first
problem, the maximum parsimony method
(Camin and Sokal, 1965; Fitch, 1977) has
been extensively used for amino acid or
nucleotide sequence data. For the estima-
tion of branch lengths, however, this
method is expected to underestimate the
number of amino acid or nucleotide sub-
stitutions. This property comes from the
principle of the method itself: minimize
the number of changes required. Thus each
branch length (estimated by Fitch’s [1971]
method) is expected to be smaller than the
real length on average. In spite of this
known shortcoming, the maximum parsi-
mony method seems to be quite appropri-
ate for the estimation of branch length in
terms of amino acid or nucleotide substi-
tutions when closely related sequences are
compared, since the probability of back-
ward and parallel substitutions is negli-
gible in this situation. But how close should
sequences be? The number of sequences
compared is also related to this problem,
because we expect to extract more and more
changes as the number of sequences is in-
creased. So far, there seems to be no the-
oretical study on these subjects.

In this paper, I show the effect of the

amount of divergence and the number of
nucleotide sequences on the estimates of
branch lengths by the maximum parsi-
mony principle. For simplicity, I consider
the model of random nucleotide substitu-
tion (Jukes and Cantor, 1969). A constant
rate of evolution, or the molecular clock,
is also assumed. Further, a tree topology
with no hierarchical structure is consid-
ered. Under these assumptions, the ex-
pected number of required nucleotide
changes per site estimated by the maxi-
mum parsimony principle is computed.

MATHEMATICAL MODEL

The possible number of tree topologies
is astronomical even when sequences from
only ten or more taxa are considered (Fel-
senstein, 1978). Therefore I consider only
one of these possible topologies, the tree
with no hierarchical structure, as shown in
Figure 1. It means that the tree topology is
assumed known without applying the
maximum parsimony method. Thus the
problem considered in this paper is not
exactly the maximum parsimony method,
but the principle of maximum parsimony
is used for the estimation of branch lengths.
Thus, we call this narrower usage of the
maximum parsimony principle “the max-
imum parsimony procedure” in the fol-
lowing. It is assumed that all extant se-
quences started to diverge at the same time
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FiG. 1. An example of the topology with no hi-
erarchical structure.

from the ancestral sequence X. AT is the
expected number of nucleotide substitu-
tions per nucleotide site for each branch,
where X is the rate of nucleotide substi-
tution per site per year, and T is the di-
vergence time. We start from the simplest
case, in which there are only two se-
quences involved, and consider up to six
sequences. Then the case of the infinite
number of sequences is considered.

To measure the amount of underesti-
mation of nucleotide substitutions by the
maximum parsimony procedure, the ex-
pected number of required nucleotide
changes per branch per site under this pro-
cedure is computed. For the tree of Figure
1, this is given by the expectation of the
total number of required nucleotide
changes divided by the number of se-
quences compared. This expected number
for a tree of n sequences is denoted by E(n).

For the computation of E(n), we also as-
sume the pattern of nucleotide substitu-
tion to be random among the four nucleo-
tides (A, T, G, and C), that is, Jukes and
Cantor’s (1969) model is used. Under this
model, the probability that a nucleotide at
an extant sequence is the same as that of
the ancestral sequence is given by

p=1/4 + 3 exp(—4AT/3)/4, (la)

and the probability that a nucleotide at a
sequence is different from the ancestral one
is given by

q =1/4 — exp(—4AT/3)/4 (1b)

(see, e.g., Saitou and Nei, 1986). Note that
p + 3q = 1. These two probabilities are the
basis of the following computation.

The basic unit of information for the
maximum parsimony procedure is the nu-
cleotide configuration. Nucleotide config-
uration is the pattern of nucleotide ar-

TABLE 1. Five nucleotide configurations for se-
quences A, B, and C.

Configuration A B €
(e} X X X
G, X X Y
G, X Y, X
(@ Y X X
C; X Y Z

2X, Y, and Z are three different nucleotides.

rangement for sequences compared in
terms of nucleotide difference. For exam-
ple, there are five nucleotide configura-
tions for three sequences (see Table 1). In
general, the number (c) of possible nu-
cleotide configurations for n sequences are
given by

c= (4" + 3271 + 2)/6 )

(Saitou and Nei, 1986). For topologies with
no hierarchical structure, however, it is not
necessary to distinguish sequences, and the
computation of E(n) can be greatly sim-
plified, as shown below.

RESULTS

Two sequences.—When two sequences are
compared, there are only two nucleotide
configurations. Two nucleotides at a site
are identical or different from each other.
Because the substitution pattern assumed
in this study is symmetrical and the process
of nucleotide substitution is time-reversal,
we can assume one of the sequences to be
ancestral and the other to be extant. In this
case, the time interval in equations (1a) and
(1b) becomes 2T. Noting that any of three
different nucleotides can be at the position
of the extant site, the probability (r) of
observing the event that the extant nu-
cleotide is different from the ancestral
one is

T =3[1/4 — exp(—4\-2T/3)/4]. (3)

Because one nucleotide change is required
for sites in which two sequences are dif-
ferent, the expected number [E(2)] of re-
quired nucleotide changes for two se-
quences is

EQ2) =7/2 = 3(1 — a?)/8, (4)
where a = exp(—4AT/3).
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Three sequences.—There are five nucleo-
tide configurations for three sequences
(Table 1). Configuration C, requires no nu-
cleotide change, whereas configurations C,,
C,, and C, require one nucleotide change,
and configuration C, requires two changes.
Thus,

E@3) = (U, + U, + U, + 2Uy)/3, (5)

where U, is the probability for observing
configuration C;.

There are three possible ways the nu-
cleotide arrangement in configuration C,
could be observed: (1) two nucleotides are
the same as the ancestral one, (2) one nu-
cleotide is the same as the ancestral one,
and (3) all three nucleotides are different
from the ancestral one (see Fig. 2A). Be-
cause nucleotide Y in case (1) can be any
of three nucleotides that are different from
the ancestral one (X), the probability for
this case becomes 3p?q. Similarly, proba-
bility for case (2) becomes 3pg*>. On the
other hand, there are two nucleotides (Y
and Z) that are different from the ancestral
one (X) in case (3), and we can have six
possibilities for Y and Z. Therefore the
probability for case (3) becomes 6q°. Thus,

U, = 3p%*q + 3pq® + 6q°. (6a)

Configurations C, and C, become iden-
tical with configuration C, if we ignore the
label of sequences. Therefore,

U,=U,and U, = U,. (6b)

As for configuration Cs, there are two
possible ways the nucleotide arrangement
could be observed: (1) one of three differ-
ent nucleotides is identical with the an-
cestral one and (2) all three nucleotides are
different from the ancestral one (see Fig.
2B). There are six possibilities for the choice
of nucleotides Y and Z for case (1), and the
position of nucleotide X can be any of three
sequences. Thus, the probability for this
case becomes 18pq?. Similarly, the proba-
bility for case (2) becomes 6q°. Thus,

U; = 18pqg? + 69°. (7)
Substituting U, — Us given by equations
(6a), (6b), and (7) into equation (5), we ob-
tain

(A)
x\ji/\( X Y X Y\‘l(/(z
X X X
Case (1) Case (2) Case (3)
(B)
% sod wiLmon ik
X X
Case (1) Case (2)

FiG. 2. (A) Three cases for configuration C, for
three sequences. (B) Two cases for configuration C,
for three sequences. Three sequences in each tree are
in the order of A, B, and C from left to right (see
Table 1). p and q are probabilities given in equations
(1a) and (1b), respectively.

E(3) = 3p?q + 15pq* + 10q°
=1 —a)7 + 7a — 2a%)/16. (8)

Four sequences.—There are fifteen nu-
cleotide configurations for four sequences
(see equation (2)), but they can be classified
into five states (D,-Ds; see Table 2), if we
combine configurations with the same nu-
cleotide pattern. For example, nucleotide
pattern (XXYY) of Table 2 includes config-
urations [XXYY], [XYXY], and [XYYX], in
which the order of sequences is specified.
This simplification is possible because we
are considering topologies with no hier-
archical structure, and the label of species
can be ignored. Let us define V, as the prob-
ability for state D;. The required number
of nucleotide substitutions for each state
under the maximum parsimony procedure
is 0 for D,, 1 for D,, 2 for D; and D,, and
3 for Ds. Thus,

E(4) = (V, + 2V, + 2V, + 3V,)/4. (9)
V, is given by
(10)

where n, is the number of configurations
for the i-th state and Uj is the probability
of having a configuration in the i-th state

V,=nU,
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TABLE 2. Five states for four sequences.

Number of

State Nucleotide pattern® configurations U;

D, X X X X 1 p* + 3q¢

D, X X X X 4 3p’q + 3pq® + 6q*
D, X X Y Y 3 6p°q* + 6q

Dy X X Y Z 6 6p’q* + 12pq® + 6q*
D, X Y z W 1 24pq’

*X, Y, Z, and W are four different nucleotides,

(note that the meaning of the subscript i
for U is different from that for the case of
three sequences). Applying the same logic
used in the case of three sequences, U,’s
are obtained and they are shown in the last
column of Table 2. From these U’s and
equations (9) and (10), we obtain

E(4) = 3(p*q + 9p%q + 19pq® + 11q*)
=3(1 — a)1 + a)(5 — a?)/32. (11)

Five sequences.—There are 51 configura-
tions for five sequences, and these can be
classified into six states (see Table 3). Then,

E(5) = (V, + 2V, + 2V,

+ 3V, +3Vy)/5. (12

Using equation (10) and U,’s in Table 3,
Vs are obtained and they are substituted
into (12).
E(5) = 3(p'q + 12p°q* + 52p*q®
+ 71pq* + 36q°)
=3(1 — a)(43 + 43a — 11a?
— 23a® + 12a%)/256. (13)
Six sequences.—There are 187 nucleotide
configurations for six sequences, and they

can be classified into nine states (see Table
4). Then, as in the case of five sequences,

E(6) = (V, + 2V, + 2V, + 3V,
+ 3V, + 3V, + 4V,
+ 4V,)/6.
= 3(p°q + 15p*q?
+ 90p°q® + 245pq*
+ 261pq° + 112q°)
=3(1 — a)(181 + 18la — 742
— 114¢® + 101t

— 192°)/1,024. (14)

Infinite number of sequences.—As the up-
per limit, we consider the case of the in-
finite number of sequences. In this case,
the procedure for obtaining E(co) is quite
simple. Since we assume that an infinite
number of nucleotide sequences is avail-
able, the ancestral sequence for each site
can be determined unambiguously. Thus,
we only need to compare the nucleotide
of an extant sequence and the ancestral
one. One substitution is required if these
are different and no substitutions are re-
quired if these are identical. Unless the
time T is infinite, p > q from equations
(1a) and (1b). This implies that the ances-
tral nucleotide at a site should be the most
frequent one among the present nucleo-
tides. Hence,

TABLE 3. Six states for five sequences.
Number of

State Nucleotide pattern® configurations U;
D, X X X X X 1 p* + 3¢°
D, X X X X Y 5 3p'q + 3pq* + 6q°
D, X X X Y Y 10 3p’q® + 3p’q® + 6q°
D) X X X Y Z 10 6p’q® + 12pq* + 6q°
D, X X Y Y Z 15 12p’q* + 6pq* + 6q°
Dy X X ¥ Z w 10 6p*q’ + 18pq*

*X, Y, Z, and W are four different nucleotides.
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TaBLE 4. Nine states for six sequences.

State Nucleotide pattern?® n;® U;

D, X X EXeprGan X paX 1 p* + 3q°

D, X X X B RY 6 3p°q + 3pq’ + 69°

D, X X X X Y Y 15 3p‘q® + 3p’q* + 69°

D} X X X X Y Z 15 6p‘q> + 12pg® + 6q°

D, X MY EIEXCHITY TV Y: 10 6p’q® + 6q°

D, oy Wbgry Xer i niYon 92 60 6p’q® + 6p’q* + 6pq’ + 6q°
D. XXy X Y o Z e W 20 6p'q® + 18pq®

Dy X X X Y, Z Z 15 18p%q* + 6q°

B XX Y Zh W 45 12p*q* + 12pq°

aX,Y,Z and W are four different nucleotides.
b Number of configurations for the i-th state.

E(co0) = 3q = 3(1 — a)/4. (15)

It may be interesting to note that even when
the divergence time T becomes infinite,
E(c0) approaches only 0.75, since «a
[=exp(—4AT/3)] becomes zero in this case.

Comparison of E(n).—In Table 5, E(2), E(3),
E(4), E(5), E(6), and E(c0) are presented for
various values of AT’s. These are obtained
from equations (4), (8), (11), (13), (14) and
(15), respectively, and the same a value,
that given by exp(—4\T/3), is used. For all
AT values, E(n) increases as the number of
sequences (n) increases. The reason for this
is that the determination of the ancestral
nucleotide X becomes more and more un-
ambiguous as n is increased, hence more
parallel changes are detectable. When AT
is small, it is apparent that E(n) quickly
approaches E(c0) as the number of se-
quences (n) increases. When AT is 0.10, the
difference between E(co) and AT remains
small (the relative difference is 6.4%).
However, E(c0) underestimates AT by more
than 10% when the true value is 0.2 or
greater. When AT is 1.0, the maximum par-

simony procedure gives a gross underes-
timate of the branch lengths; E(0) is only
slightly larger than half of the expected
length.

DISCUSSION

In this study trees with no hierarchical
structure are assumed. In reality, some nu-
cleotide sequences are more closely related
than others. For example, sequences 1 and
2 of tree A of Figure 3 are more closely
related than the other two sequences. In
this case, the behavior of tree A in terms
of the estimation of total branch lengths
can be approximated as tree B in which
sequences 1 and 2 are identical. On the
other hand, if we consider tree C where
sequences 1 and 2 are assumed to evolve
from the same ancestral sequence, the total
number of nucleotide substitutions esti-
mated for tree C should be larger than that
for tree A. Therefore, if we let 2AT (the
expected distance between any two se-
quences in the tree of Fig. 1) be the largest
pairwise distance among all the observed

TaABLE 5. Comparison of E(n) for various AT values.

AT

n 0.01 0.05 0.10 0.20 0.50 1.00
2 0.00987 0.0468 0.0878 0.1550 0.2762 0.3489
3 0.00990 0.0476 0.0905 0.1637 0.3061 0.4007
4 0.00993 0.0483 0.0929 0.1710 0.3270 0.4301
o 0.00993 0.0483 0.0934 0.1736 0.3416 0.4592
6 0.00993 0.0484 0.0936 0.1747 0.3497 0.4788
[e¢] 0.00993 0.0484 0.0936 0.1756 0.3649 0.5523
AT — E(c0) 0.00007 0.0016 0.0064 0.0245 0.1351 0.4477
dif* 0.7 3.3 6.4 12.2 27.0 44.8

# Ratio of [AT — E(e0)]/AT in percentage.
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FIG. 3. A relationship of three topologies for four
sequences.

distances, the results derived in this study
can be considered as the upper limit of the
degree of underestimation of the total
number of nucleotide substitutions for a
given number of sequences.

There are three types of hidden nucleo-
tide changes which may or may not be de-
tected by the maximum parsimony meth-
od: (1) parallel changes, (2) backward
changes, and (3) successive changes. If there
are only two characters such as + and —,
types (1) and (2) are sufficient. In the case
of nucleotide sequences, however, we need
to consider case (3) because there are four
nucleotides. For example, changes like
A - G - T belong to this case. In this
connection, it should be noted that parallel
changes alone can be detected with the
present model tree of no hierarchical struc-
ture. To detect changes of the other two
types, we need a tree of hierarchical struc-

ture. In that case the detectability of these
hidden changes depends on the number
of branching events between two se-
quences compared in a given topology.
Recognizing this property, Fitch and Bru-
shi (1987) recently presented a new meth-
od for correcting branch lengths estimated
by the maximum parsimony method. The
analytical method presented in this study
can be used for studying the reliability of
their method.
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