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Statistical Methods for Phylogenetic Tree
Reconstruction

Naruya Saitou

1. Introduction

Reconstruction of the phylogeny of organisms is one of the most important
problems in evolutionary study. A phylogeny is usually illustrated by a tree-like
figure. Thus we call it ‘phylogenetic tree’ or simply ‘tree’ in this chapter. It may
be interesting to note that Darwin (1859) was the first to show such a tree to
explain the pattern of divergence of species through evolution, though his tree
was an imaginary one.

Previously phylogenetic trees were reconstructed mostly by using morphological
data. With the advent of the study of molecular evolution, however, it is now
customary to construct phylogenetic trees from molecular data, especially from
nucleotide sequences. In this chapter we will therefore be concerned primarily
with nucleotide sequence data. Nevertheless, most of the methods discussed in
this chapter can also be applied to other types of data, including non-molecular
data. I will first discuss theoretical aspects of phylogenetic trees in the next
section. Distance matrix methods and character-state methods are explained in
Sections 3 and 4, respectively. Lastly, the efficiency of different methods is dis-
cussed.

2. Theoretical aspects of phylogenetic trees

2.1. Rooted trees and unrooted trees

Mathematically, a phylogenetic tree is literally a ‘tree’ in graph theory. (A graph
is composed of node(s) and edge(s). A node represents any object and an edge
represents the relationship between nodes.) A tree is a special kind of graph: there
should be only one path between any two nodes. Thus there is no loop in a tree
(e.g., see Figure 1). In evolutionary study, the term ‘branch’ is used instead of
‘edge’ and not only the branching pattern (topological relationship between nodes)
but the length of each branch is often important.

A tree can be either directed or undirected. In a directed tree there is a
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Fig. 1. Examples of a rooted tree (a) and an unrooted tree (b) for five OTUs.

particular node, or root, and there will be a unique path from this node to any
other node. Hence a directed tree is also called a rooted tree. Figure 1(a) shows
an example of a rooted tree, in which the root is designated as R. In organismal
evolution, the direction is of course that of time and the root is the common
ancestor. Therefore a phylogenetic tree in an ordinary sense is a rooted tree.

An undirected tree does not have such root, and it is also called an unrooted
tree. Although an unrooted tree itself may not be regarded as a phylogenetic tree,
it can be converted to a rooted tree if the position of the root is specified.
Figure 1(b) is an example of an unrooted tree, and the topological relationship of
nodes is identical with that of Figure 1(a) if we ignore the root (R) of Figure I
and the difference of branch lengths between these two trees. Unrooted trees are
sometimes called ‘networks’, but that has a different meaning in graph theory.

Nodes can be any kind of object, and in evolutionary study, it can be a species,
populations, or genes, as will be discussed in Section 2.4. It is useful to dis-
tinguish exterior nodes (full circles in Figure 1) and interior nodes (empty circles
in Figure 1). Exterior nodes have only one branch but interior nodes have more
than one branch. We usually have informations on the exterior nodes only.
Exterior nodes are often referred to as operational taxonomic units (OTUs) and
interior nodes may be called hypothetical taxonomic units (HTUs).

2.2. Possible number of trees

When we consider the phylogenetic relationship of three OTUs, there are three
possibilities (Figure 2(a)). The true phylogenetic tree is one of these rooted trees.
The number of possible trees rapidly increases with increasing the number of
OTUs compared. The general equation for the possible number of bifurcating
rooted trees for n (>2) OTUs is given by

(2n = 3)1/2"*(n - 2)!). (2.1)

Equation (2.1) was first presented by Cavalli-Sforza and Edwards (1967). The
number of bifurcating unrooted trees for » OTUs is given by replacing n by n — 1
in equation (2.1). Figure 2(b) shows the three possible unrooted trees for four
OTUs. Table 1 gives the possible number of rooted and unrooted bifurcating trees
up to 10 OTUs. For the number of multifurcating trees, see Felsenstein (1978a).
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Fig. 2. (a) Three possible rooted trees for three OTUs. (b) Three possible unrooted trees for four

OTUs.

Table 1
Possible numbers of rooted and unrooted trees for i OTUs

Number of Possible number of
OTUs
Rooted trees Unrooted trees
2 1 1
3 3 1
4 15 3
5 105 15
6 945 105
7] 10395 945
8 135135 10395
9 2027025 135135
10 34459425 2027025

It is clear from Table 1 that the search of the true phylogenetic tree for more
than 10 OTUs is as if looking for a needle in a haystack, if we examine trees one
by one. Unfortunately, the problem of finding the true tree from all the possible
trees belongs to a so-called NP-complete problem, and there is no effective
algorithm for this: we have to do an exhaustive search of all possible trees. This
is why so many heuristic methods have been proposed for reconstruction of
phylogenetic trees.

2.3. Topological differences between trees

The branching pattern of a tree with a given number of OTUs is called a
‘topology’ in evolutionary study (here too the word has a different meaning in
graph theory). Each tree has its own topology, distinguished from those of other
trees. However, the amount of topological difference can vary from tree to tree.
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Robinson and Foulds (1981) devised a metric to represent the topological differ-
ence between trees for the same number of OTUs. Two trees (a and b) are
presented in Figure 3. The topological difference between these two trees is
defined by the number of operations necessary to transform each other. In this
case, we need six operations (three contractions and three decontractions: see
Robinson and Foulds, 1981). Tateno et al. (1982) called this metric a ‘distortion
index’.
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Fig. 3. Two topologically different trees (a and b) for 8 OTUs and their consensus tree (c).

A multifurcating tree ¢ of Figure 3 is sometimes called the ‘consensus tree’ for
trees a and b of Figure 3 (Adams, 1972). When trees a and b are equally likely,
one way 1s to present the consensus tree c. Tree ¢ can be obtained after three
contractions of trees a and b.

2.4. Gene trees and species trees

Traditionally a phylogenetic tree automatically means a tree of species. However,
genes are usually the units of comparison in molecular evolution, and there are
several important differences between the phylogenetic tree of species and that of
genes. The former is called ‘species tree’ and the latter ‘gene tree’ (Tateno et al.,
1982; Nei, 1987). The most prominent difference between these two trees is
illustrated in Figure 4. Because a gene duplication occurred before the speciation
of species A and B, both species have two homologous genes (1 and 2) in their
genomes. In this situation, we should distinguish ‘orthology’, that is homology of
genes reflecting the phylogenetic relationship of species, from ‘paralogy’, that is
homology of genes caused by gene duplication(s) (Fitch, 1970). Thus, genes A/
and B (or A2 and B2) are ‘orthologous’, but genes 4/ and 42, BI and B2, Al
and B2, or A2 and B2 are ‘paralogous’. If one is not aware of the gene duplication
event, gene tree for 4/ and B2 may be misrepresented as the species tree of A
and B, and thus a gross overestimation of the divergence time may occur.
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Fig. 4. A gene tree for four genes from two species.

Even when orthologous genes are used, a gene tree may be different from the
corresponding species tree. This difference comes from the existence of allelic
polymorphism of the ancestral species. A simple example is illustrated in Figure 5.
A gene sampled from species A has its direct ancestor in the ancestral species X,
and so does a gene sampled from species B. Thus the divergence between two
genes sampled from different species always overestimates that of species (see
Figure 5(a)). The amount of overestimation is related to the population size of the
ancestral species X (see Tajima, 1983, for details). It may be interesting to note
that Nei (1972) considered this overestimation and estimated the amount by the
average heterozygosity in the present population. Thus Nei's genetic distance is
an estimation of the amount of divergence of species or populations, not genes.
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Fig. 5. Two gene trees (a and b) in which the topological relationship of genes is the same as or
different from that of the specie trees, respectively.

The difference between species tree and gene tree is not confined to the amount
of divergence. If the time T (=t, — t,; see Figure 5) is not long, the two ancestral
genes sampled from species A and B may coexist in the ancestral species Y. At
this stage we also have a gene that is ancestral to a gene sampled from species
C. Thus the topological relationship of these three genes is determined by chance
alone, and it is possible to have a gene tree in which the topological relationship
is different from that of species tree, as shown in Figure 5(b). For a more detailed
discussion, readers may refer to Nei (1987).

When we consider phylogenetic relationships of different populations rather
than species, the phylogenetic tree of populations may be called ‘population tree’.
If the effect of migration between populations is ignored, a population tree is
essentially the same as a species tree. Thus the above explanation on species trees
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is applicable to population trees. On the difference between a population tree and
a gene tree, readers may refer to Takahata and Nei (1985) and Pamilo and Nei
(1988).

If the recombination or gene conversion events are also considered, the problem
of constructing gene trees becomes much more complicated. Readers who are
interested in this topic may refer to Hudson and Kaplan (1985).

2.5. Expected trees and observed trees

Branch lengths of a phylogenetic tree is ideally proportional to physical time. Thus
the branch a and b of Figure 1(a) should have the same length. We call this type
of tree ‘expected tree’. In real data, however, we may have different lengths for
branches a and b. This is because the amount of genetic change is not always the
same between these two branches. A tree reconstructed from observed data is
called ‘observed tree’. Both species tree and gene tree can be either an expected
or an observed tree. The distinction between expected and observed trees is
similar to that between expected and realized distance trees defined by Nei (1987).

If the rate of evolution is constant among different lineages, or if the molecular
clock is assumed, one may think that an observed tree is the same as the expected
tree. However, this may not be the case. Even if the rate is constant, an observed
tree usually show some variations on the number of nucleotide substitutions for
each branch because of stochastic and sampling errors of nucleotides compared.
It is thus important to distinguish observed trees from expected trees.

2.6. Classification of methods for tree construction

Many methods have been proposed for finding the phylogenetic tree from
observed data. To clarify the nature of each method, it is useful to classify these
methods from various aspects. Tree-making methods can be divided into two
types in terms of the type of data they use; distance matrix methods and character-
state methods. A distance matrix consists of a set of 3n(n — 1) distance values
for n OTUs (see Table 2 as an example), whereas an array of character states is
used for the character-state methods. Sections 3 and 4 are thus classified.
Another classification is by the strategy of a method to find the best tree. One
way is to examine all or a large number of possible trees and choose the best one
in terms of a certain criterion. We call this the ‘exhaustive search method’. For
example, the maximum parsimony method belongs to this category. The other
strategy is to examine a local topological relationship of OTUs and find the best
tree. This type of method is called the ‘stepwise clustering method’ (Saitou and
Imanishi, 1989). Most of the distance methods are stepwise clustering methods.
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Table 2
An example of distance matrix®
& P G H (6}

Common chimpanzee - 0.0117 0.0415 0.0373 0.0895

Pygmy chimpanzee 0.0118 - 0.0405 0.0319 0.0863
+0.0036

Gorilla 0.0427 0.0416 - 0.0362 0.0905
+0.0069 +0.0068

Human 0.0382 0.0327 0.0371 - 0.0873
+0.0065 +0.0060 +0.0064

Orangutan 0.0953 0.0916 0.0965 0.0928 -
+0.0106 +0.0104 +0.0107 +0.0104

a Data from Hixson and Brown (1986). Figures above the diagonal indicate the proportion of the
nucleotide difference, and those below the diagonal are the estimated number of nucleotide sub-
stitution per site (with their SEs).

3. Distance methods

3.1. Distance matrices

In distance methods, a phylogenetic tree is constructed by considering the rela-
tionship among the distance values of a distance matrix. There are two kinds of
distances; metric and non-metric. The former follows the principle of triangle
inequality and the latter does not. The triangle inequality is:

D, <Dy +D,, (3.1)
ij ik J

where D,; is the distance between OTUs i and j. In numerical taxonomy, espe-
cially in cladistics, use of metric distance is advocated (see Section 4.2 for
cladistics). In molecular evolution, however, the estimated number of nucleotide
substitutions as an evolutionary distance does not necessarily follow the principle
of triangle inequality.

An example of a distance matrix is presented in Table 2. The data are Hixson
and Brown’s (1986) mitochondrial DNA sequences for human (H), chimpanzee
(C), pygmy chimpanzee (P), gorilla (G), and orangutan (O). Gaps in the aligned
sequences were excluded, and a total of 939 nucleotides were used for the
analysis. Values above the diagonal are the proportions of nucleotide differences,
and those below the diagonal are evolutionary distances (numbers of nucleotide
substitutions per site).

There are many methods for estimating evolutionary distances (see Nei, 1987,
for a review), and we used a simple method of Jukes and Cantor (1969) for this
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case. Evolutionary distance (d) between two nucleotide sequences is estimated by
d = -Zlog[1 - 3p], (3.2)

where p is the proportion of different nucleotides between the two sequences. The
standard error of d is estimated by

SE(d) = 3/(3 - 4p)[p(1 - p)/L]"2, (3.3)

where L is the number of nucleotides compared (Kimura and Ohta, 1972).

3.2. Phenetic methods

A simple way of classification of organisms is to combine phenotypically similar
objects first. This approach is called ‘phenetics’ in numerical taxonomy. A phylo-
genetic tree constructed by a phenetic approach is called ‘phenogram’. There are
many ways to obtain a phenogram from a distance matrix (see Sneath and Sokal,
1973 for a review), and all are step wise clustering methods. In this section, two
methods (UPGMA and WPGMA) that are frequently used in molecular evolution
will be discussed. Original ideas of UPGMA (Unweighted Pair Group Method
by average) and WPGMA (Weighted Pair Group Method by Arithmetic average)
were first proposed by Sokal and Michener (1958). UPGMA was independently
proposed by Nei (1975) for molecular data.

Let us explain the algorithms of UPGMA and WPGMA using the evolutionary
distance matrix of Table 2. We first choose the smallest distance, that is, Dp
(=0.0118). Then OTUs P and C are combined and the distances between the
combined OTU (PC) and the remaining OTUs are computed as:

Dpcy = 3(Dp; + D¢,) (3.4)
where i represents an OTU other than P or C. Hence there are now only six

distance values (see Table 3(a)). At the next step, again the smallest distance
(Dpcyn = 0.0355) is chosen from the distance matrix of Table 3(a). Then the OTU

Table 3
An example of the procedure used in UPGMA and WPGMA
(a) First step (b) Second step®

PC G H PCH G (0]
G 0.0422 PCH - 0.0397 0.0932
H 0.0355 0.0371 G 0.0405 - 0.0965
(0) 0.0935 0.0965 0.0928 (6] 0.0932 0.0965 -

“ Figures above and below the diagonal are obtained by WPGMA and UPGMA, respectively.
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(PC) and OTU H are further combined into OTU (PCH). When we compute the
average distance between OTU (PCH) and other two OTUs (G and O), the
difference between UPGMA and WPGMA arises. In the case of UPGMA, the
original distances are always used for obtaining the averaged distances, whereas
the current distance matrix is used for WPGMA. Thus, for example,

Dpcnyc = %(Dpc + Do + Dyg) = 0.0405
if we apply UPGMA, and
D(PCH)G 5 %(D(PC,)G 5P DHG) = 00397

if we apply WPGMA. If the data strictly follows the constancy of evolutionary
rate, these two values are identical. In reality, however, the rate may not be the
same. Thus there can be a slight difference between distances obtained by
UPGMA and that by WPGMA. Table 3(b) shows the distance matrix after the
second step.

After two more steps, all five OTUs are clustered into a single OTU. The final
tree thus obtained by UPGMA is shown in Figure 6(a). The tree obtained by
WPGMA has the same topological relationship with that tree in the present
example. Note that an estimated distance between any pair of OTUs can be
obtained by summing all branch lengths connecting these two OTUs.

Boxes of Figure 6(a) represent the ranges of one standard error (SE) of the
distance of each branching points from the present time, computed by Nei et al.’s
(1985) method. Computation of SEs was done as follows. The SE of distance X

a 119 5:!( C b 140 “C
25 g]y s P L9 5P
w 287 8. G
-E i 203 G 7/ (NS H
470 0 _L__O
Cc 150 = C d 129 = C
L 32 P 276 42 P
223 138 H 160 H
197 G 159] 212 G
485 0 470 0

Fig. 6. Phylogenetic trees reconstructed by UPGMA (a), the Fitch—-Margoliash method (b), the

distance Wagner method (c), and the neighbor-joining method (d). The data are from Table 2. All

figures should be multiplied by 10~ *. Boxes in tree a denote one SE of the distances between each
branching points and the extant species.
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(= Dy = Dyp) of Figure 6(a) is given by SE(X) = 1 SE(Dpc), where SE(Dpc) is
SE of Dpc. Thus SE(X) = 3 x 0.0036 = 0.0018 from Table 2.

Estimation of SE(Y) is more complicated. We first note the relation
SE%(Y) = V(Y) = %V(D(PC)H), where V(-) denotes a variance. Dpc,)y has been
estimated by }(Dpyy + Dcyy) applying equation (3.4). Thus

V(Dpcyn) = V[%(DPH + Dcy)]
= i[V(DPH) + V(Dcp) + 2Cov(Dpyy, Dey)l (3.5)

where Cov (i, j) is the covariance between distances i and j. Because the lineages
of two chimpanzee species evolved independently after the divergence at point X,
CoV(Dpyy> Do) = V(Dyx), where Dy is estimated by

DHX = D(PC)H ) %DPC = %(DPH + DCH) bE %DPC K (36)
Thus,
Dyyx = 1(0.0327 + 0.0382) — 4 x 0.0118 = 0.02955 ,

from Table 2. This value is an estimate of evolutionary distance (d) between
nodes X and H of Figure 6(a). However, the proportion (p) of nucleotide differ-
ence is used for estimating the variance (or square of SE) of d (see equation 3.3).
Therefore we estimate p from d applying equation (3.2) as

p=3[1-e43], (3.7)
In the present example, p becomes 0.02898. Putting this value into equation (3.3),
Cov(DpgniPen) = Vilgx) = [SE(ELL)]? = 0.3240x 10~ *.

Putting this and two other variances (squares of SEs in Table 2) into
equation (3.5),

V(Dpeyn) = 2(0.00652 + 0.0060 + 2 x 0.3242 x 10-4) = 3.577 x 1075

Hence, SE(Y) = 3[V(Dpcyn)]"? = 0.0030. SE(Z) (=0.0029) and SE(W)
(=0.0049) were computed in a similar way, and these SEs are represented as
boxes in Figure 6(a).

Nei et al. (1985) also considered evolutionary distances based on amino acid
substitutions, restriction site changes, and Nei’s (1972) genetic distance. Although
the general principle is the same, equations corresponding to equation (3.7) differ
in each distance measure. Recently, R. Chakraborty (personal communication)
improved Nei et al.’s method for Nei’s genetic distance.

The constancy of the evolutionary rate is implicitly assumed for the phenetic
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approach of numerical taxonomy. With the discovery of molecular clock, such a
phenetic methods, especially UPGMA, has been advocated for reconstructing
phylogenetic trees (Nei, 1975). In this connection, it should be noted that
UPGMA gives least-squares estimates of branch lengths for the tree obtained
(Chakraborty, 1977). That is, UPGMA minimizes the quantity

S=Y (D, - 24,7, (3.8)

where 4 is the evolutionary rate and ¢, is the time since divergence between OTUs
i and j.

3.3. Fitch and Margoliash’s method

Fitch and Margoliash (1967) proposed an exhaustive search method for recon-
structing a phylogenetic tree. The first step of this method is to estimate branch
lengths of a tree, of which tree topology is expected to be the same or quite similar
to that obtained by UPGMA. The principle of the branch length estimation is as
follows. Let us designate L, for the length of branch connecting nodes i and ;.
Then D, = L,x + L;x in the tree of Figure 7. This is because the additivity of

X/

Fig. 7. A relationship of three OTUs.

distances is assumed. From this relationship, L;’s (i = 1, 2, and 3) are estimated
by

Lix =3(Dy3+ Dy3 — Dy3), (3.9a)
Lyx =3(Dy; + Dy; - Dy3), (3.9b)
Lyx =3(Di3 + Dy3 — D). (3.9¢)

When we compare » (>3) OTUs, OTU 3 is a composite OTU, which consists
of all the remaining OTUs. Then D,; and D,, are given by taking averages of
D,/s and D,/s (j =3, 4, ..., n), respectively.

If D, is found to be the smallest, then OTUs 1 and 2 are combined as in the
case of UPGMA and the averaged distances between this combined OTU (12)
and other OTUs are computed using equation (3.4). L,y and L,y are also
computed applying equations (3.9a) and (3.9b) at this step. The same procedure
is repeated until all OTUs are clustered to become a single OTU.

At the next step the so-called percent standard deviation (PSD) is used as the
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criterion. For distance data of n OTUs,

. 172
péh 2 [ZZ {(D, EU)/DU‘}Z} x 100, (3.10)
nn—-1)

where the summation is for all possible pairs of OTUs and E,; is estimated
(patristic) distance between OTUs i and j. E,; is obtained by summing estimated
lengths of branches connecting OTUs i and j.

Tateno et al. (1982) proposed a criterion (S,) similar to PSD:

. 271/2
= [M] . (3.11)
(n-1)

We can use either PSD or S, as the criterion to find the best tree, and the tree
that has the smallest PSD or S, is chosen as the best tree through an exhaustive
search of all possible trees.

Table 7 shows values of PSD and S, for four trees obtained from data of
Table 2. Tree 1 has been obtained by UPGMA (see Figure 6(a)). Two chim-
panzee species are clustered for trees 2 and 3 as in tree 1, but the branching
pattern among human (H), chimpanzees (PC), and gorilla (G) is different each
other. Human and pygmy chimpanzee are clustered in tree 4. The Fitch-
Margoliash (FM) method chose tree 2 as the best tree among these four trees as
did Tateno et al.’s (1982) method (see Table 7). The tree thus obtained is shown
in Figure 6(b). Note that there is a negative branch (between H and (PCG)
cluster) in this tree.

Because the FM method produces an unrooted tree, orangutan was assumed
to be the outgroup species among five species compared in this example, and the
root was located on the branch going to orangutan, assuming a constancy of
evolutionary rate.

Prager and Wilson (1978) and Sourdis and Krimbas (1987) modified the
criterion of the FM method for choosing the best tree. They discarded trees in
which negative branch lengths were obtained. Tree 2 is discarded if we use this
modified criterion, and instead tree 3 will be chosen. However, it is possible that
even the true tree may have a branch with negative distance. A negative value for
a branch may appear if there are many backward and parallel substitutions.

Other types of modification of the FM method have been proposed by de Soete
(1983) and Elwood et al. (1985). Readers who are interested in their modifications
may refer to original papers.

3.4. Distance Wagner method

Farris (1972) proposed a method that can be considered as an application of the
principle of maximum parsimony to distance data. Because the technique of
reconstructing unrooted trees from character-state data is called “Wagner network’
in cladistics, Farris named this method ‘distance Wagner’ (DW) method. In this
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case, however, a distance measure satisfying triangle inequality (a metric) is sup-
posed to be used. Thus in the following, proportion of nucleotide difference of
Table 2, that is a metric, is used.

We first connect two OTUs of which distance is the smallest. This is Dpc
(=0.0117) from Table 2. Then these two OTUs are combined and the distance
between this combined OTU (PC) and the remaining OTUs are computed by
equation (3.4). Second, the OTU that has the smallest distance from the OTU
(PC) is chosen. The appropriate OTU is H. After this choice, Lpx, Lcex, and Ly
are computed by applying equations (3.9a)—(3.9¢).

We now proceed to the next step, where one more OTU is added to the
unrooted tree for three OTUs. There are three possibilities for each remaining
OTU (either G or O) to be connected to the tree. For example, OTU G may be
connected to either branch PX, CX, or HX (see Figure 8). Thus lengths of all

Fig. 8. Three possible additions of OTU G to P-C-H tree.

possible branches are computed and the branching pattern that gives the shortest
length is chosen to be connected to the three-OTU tree. Branch lengths are
computed in a similar way as equation (3.9):

Lg,v, =3Dcp + Lo,x — Lex)» (3.12a)
LG(-Y(- = %(DGC 2 LG(.x = ch) ) (3.121’))
e %(DGH +Lg,x — Lux), (3.12¢)

where subscripts of G and Y designate the positions of branch connecting OTU
G (see Figure 8). In equation (3.12), Lpx, Lexs and L,y have already been
computed at the previous step, whereas Lg x = L, or L, Ls.x =L, or Ly, and
Lg, x = L, or Ly, where

L, = Dgc — Lex» L2=DGH_LHX’ L3=DGP_LPX' (3.13)

Among L,, L,, and L, the largest value is used for all of the Lg x (i=P, C,
or H) in equation (3.12). Tateno et al. (1982) considered the use of the distance
Wagner method for evolutionary distance that are not metric. In this case, a gross
overestimation of branch length can happen by this procedure. Thus they used the
average of L,, L,, and L, instead of the largest value. Faith (1985) took a
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different modification for estimating Lg,x of equation (3.12). In this case,
equation (3.9) is repeatedly used and the weighted average gives the estimates for
these branch lengths.

In the present example, L; (=0.0374) is the largest and putting this and the
other values into equations (3.12a)—(3.12c), Lg,,v, (=0.0224) turns out to be the
smallest. Thus OTU G is connected to the branch HX. The same procedure is
repeated until all OTUs are connected. The final tree is presented in Figure 6(c).

As in the case of the FM method, the DW method also produces unrooted
trees. Thus we can locate the root at the branch going to orangutan (O). When
we have no information on the outgroup species, the location of the root can be
estimated as the mid-point of the largest estimated distance, if a rough constancy
of evolutionary rate is assumed (Farris, 1972). Estimated (patristic) distance
between OTUs C and O (=0.0970), that is considerably larger than the observed
distance (D¢, = 0.0895), is the largest in the present example, and the root was
placed at the point of which distance is 0.0485 (=3 x 0.0970) from node O (see
Figure 6(c)). Under the assumption of constant evolutionary rate, the root can
also be obtained by minimizing the variance of evolutionary rate (Farris, 1972).

Because the proportion of nucleotide difference was used for the DW method,
the length (0.0223 + 0.0485 = 0.0708) of the branch going to OTU O of
Figure 6(c) is slightly shorter than those of other trees in Figure 6. This is prob-
ably because Jukes and Cantor’s (1969) evolutionary distances, in which multiple
hits were corrected, were used in the latter trees. However, some of the lengths
of the other branches of Figure 6(c) are larger than those of the other trees.

3.5. Neighbor-joining method

A pair of OTUs are called ‘neighbors’ when these are connected through a single
interior node in an unrooted, bifurcating tree. For example, OTUs A and B in
Figure 1(b) are a pair of neighbors. If we combine these OTUs, this combined
OTU (AB) and OTU C become a new pair of neighbors. It is thus possible to
define the topology of a tree by successively joining pairs of neighbors and
producing new pairs of neighbors. For example, the topology of tree a in Figure 3
can be described by the following pairs of neighbors: [1, 2], [5, 6], [7, 8],
[1-2, 3], and [1-2-3, 4]. Note that there is another pair of neighbors,
[5-6, 7-8], that is complementary to [1-2-3, 4] in defining the topology. In
general, n — 2 pairs of neighbors can be produced from a bifurcating tree of n
OTUs.

The neighbor-joining (NJ) method of Saitou and Nei (1987) produces a unique
final tree by sequentially finding pairs of neighbors. The algorithm of the NJ
method starts with a starlike tree, as given in Figure 9(a), which is produced
under the assumption that there is no clustering of OTUs. In practice, some pairs
of OTUs are more closely related to each other than other pairs are. Consider
a tree that is of the form given in Figure 9(b). In this tree the neighboring OTUs
[1, 2] are separated from the other OTUs (3, 4, ..., 8) by branch XY. Any pair
of OTUs can take the positions of 1 and 2 in the tree, and there are in(n - 1)
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b

Fig. 9. A star-like tree (a) and a tree (b) that is one step aside from the star-like tree.

ways of choosing them for n OTUs. Among these possible pairs of OTUs, we
choose the one that gives the smallest sum of branch lengths. Thus the principle
of minimum evolution is used in the NJ method. This pair of OTUs is then
regarded as a single OTU, and the next pair of OTUs that gives the smallest sum
of branch lengths is again chosen. This procedure is continued until all n -2
neighbors are found.

The sum of the branch lengths is computed as follows. First, the branch length
between nodes X and Y in the tree of Figure 9(b) is estimated by

1 n n
Lyy = 20 - 2) I:k§3 Dy + Dyy) = (n = 2)(Lyx + Lox) — 2 i;} LiY:I'

(3.14)

Noting the relationships L,y + Lox = Dy, and X;_3 Ly = [Z5<,-; D;1/(n = 3),
we find that the sum (S,,) of all branch lengths of the tree in Figure 9(b) becomes

Sia=Lx+Lyx+ Lxy+ Z Ly

n 1
: [Z(le+D2k)]+%D12+— Y, Dy. (3.15)

—2(n—2) k=3 n-—2 3<i<j

It can be shown that equation (3.15) is the sum of least squares estimates of
branch lengths for tree 9b (see Appendix A of Saitou and Nei, 1987). In general,
we compute all S;; (1 <ij<n) and choose the pair of OTUs i and j that shows
the smallest S;; value.

Definition of S,; seems complicated, but it can be computed in a simplified form

D;= —(R,+ R)/2(n—2) + 3D, + Ql(n - 2), (3.16)

where R, = X _ Dy, R, = Z;_ Dy, and Q = Xy _, Dy, Because R, (1<i<n)
and Q can be computed before computation of S;’s, computation of S,; is actually
quite simple (see also Studier and Keppler, 1988). Note that D,; = D;, and D,, = 0
are assumed in the computation of R/s.

Let us apply the NJ method to the evolutionary distance matrix of Table 2.
0 = 0.5803, and R;s are presented at the first column of Table 4. From these,

S,/s were computed as shown in Table 4, and we find that Spe (=0.1384) is the
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Table 4
R, values and S,; matrix for Table 2
R, € P G H
Common chimpanzee 0.1880
Pygmy chimpanzee 0.1777 0.1384
Gorilla 0.2179 0.1471 0.1483
Human 0.2008 0.1477 0.1467 0.1422
Orangutan 0.3762 0.1470 0.1469 0.1427 0.1437

smallest. Thus OTUs P and C are combined and the distance between the
combined OTU (PC) and a remaining OTU i is computed by equation (3.4). The
same procedure is repeated for the new distance matrix, and finally tree d of
Figure 6 is obtained.

Algorithm of the NJ method is quite similar to that of UPGMA. Instead of
choosing the smallest distance, we choose the smallest S,; value at each step, and
the distance averaging follows. Therefore the computation is very rapid.

When a distance matrix is strictly additive (any distance is sum of appropriate
branch lengths), the NJ method was proved to reconstruct the true tree (Saitou
and Nei, 1987; Studier and Keppler, 1988).

3.6. Transformed distance methods

When evolutionary rate varies from lineage to lineage in a phylogenetic tree as in
a tree in Figure 10, the following distance transformation may give an improved
topology for the average distance method (Farris, 1977)

Dj;=3(Dy = Dig — Djg). (3.17)
where R refers to the reference OTU. This property has been independently

rediscovered by Klotz et al. (1979) and by Li (1981) (see also Klotz and Blanken,
1981).

Fig. 10. A phylogenetic tree in which evolutionary rate varies considerably among different lineages.
Figures are branch lengths.
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The underlying logic of the transformation is as follows. If we change the sign
of D}; of the above equation, —Dj; (a positive value) corresponds to the branch
length between the reference OTU R and the interior node connecting OTUs i
and j (see equation (3.9)). Thus if we apply UPGMA to the distance matrix, the
correct topology should be obtained. The reference OTU can be a composite one
that consists of more than one OTU.

Assuming the exact additivity, distances were computed from Figure 10 and
they are shown in Table 5(a). If we apply UPGMA to this distance matrix, OTUs
C and D are first clustered, but OTUs B and E will be erroneously clustered at
the next step. Table 5(b) shows a transformed distance matrix, in which OTU R
was treated as a reference. If we apply UPGMA to this matrix, OTUs C and D
are first clustered, followed by OTUs A and B and OTUs (CD) and (AB). Thus
it is clear that the transformation gives the correct tree topology.

Table 5
Original and transformed distance matrices based on the tree of Figure 8

(a) Original distances (D) (b) Transformed distances (D')

A B (9! D E A B (& D
B 6 -12
(& 11 7 -11 =11
D 10 6 3 -11 -11 -14
E 9 5 7/ -10 -10 -10 - 10
R 17 13 16 15 12

There is one problem in this method; we usually do not know which OTU is
a reference or outgroup. Li (1981) used UPGMA for estimating the root of a tree,
and two groups of OTUs separated by this root are alternatively used for trans-
formation of distances of the other group. If the position of the root determined
by UPGMA is correct, Li's method is expected to perform efficiently. However,
it is possible that UPGMA misdetermines the root.

Let us apply Li’s (1981) method to the data of Table 2. UPGMA tree (see
Figure 6(a)) is first constructed, and five OTUs are divided into two groups
according to the position of the root. Because one group consists of only one
OTU (0O), transformed distance matrix of Table 6 is computed for OTUs (P, C,
H, and G) of the other group. It is clear that tree 3 (see Table 7) will be obtained
if we apply UPGMA to this matrix. The tree finally obtained (not shown) is quite
similar to tree 6d, which was obtained by the NJ method.

3.7. Other methods

Many other distance methods have been proposed for reconstruction of phylo-
genetic trees, and we briefly discuss some of them.
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Table 6
Transformed distance matrix of Table 2
{&; P G
Pygmy chimpanzee ~0.0876
Gorilla —-0.0746 -0.0733
Human —-0.0750 -0.0759 -0.0761

Let us consider an unrooted tree with four OTUs (see Figure 2(b)), and assume
that every distance is the sum of relevant branch lengths or that the strict addi-
tivity holds. Then we have the relation D,, + D5, < D5 + D,, = D4 + D,; for the
leftmost tree of Figure 2(b). We can use a similar relationship for finding the tree,

Do+ Dop <Dz + D, and Dy, + Dz <Dyt Do (3.18)

This condition is called the four-point metric (Buneman, 1971). The additive
condition (Dobson, 1974) or the relaxed additivity condition (Fitch, 1981) is
closely related to the four-point metric. It should be noted that the DW, the NJ,
and the transformed distance method are all reduced to this condition in the case
of four OTUs (Saitou and Nei, 1986, 1987).

Sattath and Tversky (1977) used the four-point metric for inferring tree
topology for more than four OTUs. Interestingly, their method has a similarity
with the NJ method. Fitch (1981) proposed a method also applying the four-point
metric in a somewhat different way. Readers may refer to the original papers.

Edwards and Cavalli-Sforza (1965) proposed a method called ‘cluster analysis’.
The division of OTUs that gives the largest between-cluster sum of squares (or
the smallest within-cluster sum of squares) is sequentially chosen in this method.
There are 2"~ ' — 1 ways for n OTUs to be divided into two clusters, and all
possibilities are examined. The same procedure is applied to each cluster thus
found, and finally a rooted tree is obtained after » — 1 steps.

Cavalli-Sforza and Edwards (1967) proposed two exhaustive search methods
(the additive tree and the minimum evolution methods) and they applied these
methods to gene frequency data of human populations. The additive tree method
assumes that distances along the tree are additive, and the least square method
is used to minimize the errors between observed distances and estimated dis-
tances that are obtained by summing estimated branch lengths. This procedure is
applied for all possible trees, and the tree that has the smallest sum of squares
is chosen. The minimum evolution method for n OTUs is equivalent to the Steiner
problem in n — 1 dimensions (see Courant and Robbins, 1941, for a review of
Steiner problem). Computation of the additive tree and the minimum evolution
methods are cumbersome when the number of OTUs is large.

Saitou and Imanishi (1989) proposed a simple method applying the principle
of minimum evolution. In this method, branch lengths of a given tree are esti-
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mated by the procedure of Fitch and Margoliash (1967), and the tree with the
smallest sum of branch lengths (SBL) is chosen as the best tree. It has been
shown that the property of this method is similar to that of the NJ method (Saitou
and Imanishi, 1989). An example of the minimum evolution (ME) method is
shown in Table 7. The method chose tree 3 as the best one, as in the case of the
NJ and ML methods. The ME method seems to be closely related to Dayhoff’s
(1978) method (see Blanken et al., 1982).

Table 7
Results of five exhaustive search methods for data of Table 2 (from Saitou and Imanishi, 1989)*

Method Tree 1: Tree 2: Tree 3: Tree 4:
(PC)H)G ((PC)G)H (PC)(HG) ((PH)C)G
FM +0.60 0 +0.47 +25.33
TA +0.35 0 +0.16 +4.45
ME +0.35 +1.10 0 +6.59
MP 0 +1 0 +8
ML -298 -397 0 —33.86

2 Values for FM, TA, and ME are PSD, S, x 1000, and SBL x 1000, respectively. Values for MP
is the required number of nucleotide substitutions, and those for ML is the log-likelihood. Values
of the best tree are set to be zero, and the other values represent differences from that of the best
tree.

3.8. Statistical tests

There are several methods for testing the statistical significance of a tree obtained.
In the case of a UPGMA tree, SEs of the distances of branching points can be
computed by Nei et al.’s (1985) method, as has been shown in Section 3.2. Thus
by a standard t-test, the difference of the distances of the branching points Y and
Z are shown to be not statistically significant, whereas those between X and Y
and between Z and W are statistically significant in Figure 6(a).

Hasegawa et al. (1985) applied a generalized least square method for estimating
branch lengths for a given tree, under the assumption of a constant evolutionary
rate with their own model of nucleotide substitution, and gave equations for
computing variances of estimated branch lengths. Later they also applied the
bootstrap method (Felsenstein, 1985; see also Section 4.2) for computing var-
iances (Hasegawa et al., 1987). Readers may refer to the original papers.

When we do not have the assumption of the constant rate of evolution,
unrooted trees should be considered. In this case the estimation of SEs for each
branch length is not easy. However, an approximate SE for each branch can be
obtained by applying equation (3.7). That is, estimated branch length (d) is used
for estimating the proportion () of nucleotide difference, and this p is used to
estimate SE of d using equation (3.3). If we apply this simple procedure to tree d
of Figure 6, the length (0.0015) of the branch connecting the H-G cluster and the
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CP-O cluster is not significantly greater than zero (its SE being 0.0013). Similarly,
the length (0.0129) of the branch connecting the C—P cluster and HG-O cluster
is significantly greater than zero (its SE being 0.0037). Thus the clustering of
chimpanzee (C) and pygmy chimpanzee (P) is supported, whereas that of human
(H) and gorilla (G) is not. It should be noted, however, that this method is
expected to give a smaller SE than the true value. Thus the test based on this
estimation is not conservative.

Templeton (1985) proposed a method (delta Q-test) for a statistical test of
different tree topologies. However, Saitou (1986) and Ruvolo and Smith (1986)
showed that the delta Q-test is theoretically unjustified. Thus this method is not
recommended.

4. Character-state methods

4.1. Character states

Any discrete characters can be used for character-state methods, such as mor-
phological characters, amino acid and nucleotide sequences, and restriction site
maps. In principle, each character is considered separately in character-state
methods. However, a more essential unit of comparison for the character-state
method is ‘configuration’. A configuration is a distribution pattern of characters
for a given set of OTUs. If there are two characters (ancestral and derived), there
are 2" configurations for n OTUs. For the case of nucleotide sequences, there are
four characters (A, G, T, and C) and the number (c¢) of configuration becomes

c=L@4"143x2714+2) (4.1)

(Saitou and Nei, 1986). For example, there are 5, 15, and 51 configurations for
3, 4, and 5 sequences. Any length of nucleotide sequences for a given set of
sequences can be described as an array of configurations, and the distribution
pattern of the number of each configuration is essential for the construction of a
tree.

The maximum parsimony method and the maximum likelihood method will be
discussed in the following.

4.2. Maximum parsimony method

The evolutionary process of morphological characters can be classified into two
different aspects. Groups of organisms similar in general levels of organization is
called ‘grade’ and groups of common genetic origin is called ‘clade’ (Simpson,
1961). Cladistics or cladism is named after clade. However, cladists usually rely
on the maximum parsimony method alone for finding the phylogenetic tree. A
phylogenetic tree constructed by a cladistic approach is called ‘cladogram’.
Camin and Sokal (1965) proposed the principle of maximum parsimony for
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reconstructing rooted trees from morphological characters. The tree that requires
the smallest change of characters is chosen under this principle. When one con-
siders a rooted tree, it is necessary to define the direction of the tree. This is done
by determining the state of a character either to a derived one (apomorphy) or
to a primitive one (plesiomorphy). A clade is defined by a synapomorphy, or a
sharing of a derived state. Whether the state of a character is apomorphous or
plesiomorphous depends on the opinion of each researcher. Thus there is a certain
level of subjectiveness on the determination of direction of a tree.

On the study of molecular evolution, the direction of a tree is not easy to
determine. Thus unrooted trees are usually constructed. An unrooted tree can be
converted into a rooted tree by the knowledge of an outgroup OTU or by
assuming the constancy of evolutionary rate as discussed earlier. Eck and Dayhoff
(1966) proposed the maximum parsimony (MP) method for amino acid sequence
data, and Fitch (1971) presented an algorithm for computing the minimum num-
ber of nucleotide substitutions for a given tree. A method of estimating the
minimum number of nucleotide substitutions from amino acid sequence data was
also proposed by Fitch and Farris (1974). Later Fitch (1977) clarified the prop-
erties of the MP method for nucleotide sequence data. There are several variations
for the maximum parsimony method, and reader may refer to a comprehensive
review by Felsenstein (1982).

Let us consider a tree for five nucleotide sequences, and assume that nucle-
otides A, A, T, G, and G were observed in sequences 1-5 in this order at one
nucleotide site (see Figure 11). If tree 11a is considered, interior nodes X and Z
should have nucleotides A and G, respectively, from the maximum parsimony
principle. However, node Y can have either A, G, or T, because two nucleotide
substitutions (denoted by full circles in Figure 11) are required in all three cases.

a 1 5

X Y Z
(A)e(6)—©)

©

1 5

b X Y/ Z
(A—B)—®)

Y,

Fig. 11. Two trees (a and b) for five sequences. Nucleotides for each node are shown in circles, and
dots denote nucleotide substitutions.

The case of nucleotide G at node Y is shown in tree 1la. If tree 11b is con-
sidered, we now need three nucleotide substitutions. Nodes X, Y, and Z can have
nucleotides A or G simultaneously. This example shows that the nucleotides of
ancestral or interior nodes may not be determined unambiguously, and the esti-
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mation of the length of each branch length is often difficult in the MP method.

In the above example, the minimum numbers of required nucleotide substitu-
tions are different in trees 11a and 11b. This kind of nucleotide configuration is
informative in choosing the best tree. A nucleotide configuration is ‘informative’
when there are at least two different kinds of nucleotides, each represented at
least two times. Only these informative configurations are used in the MP method
and non-informative ones are discarded. Non-informative configurations include
invariant sites and singular sites in which only one nucleotides are represented
more than one times (Fitch, 1977).

Certain nucleotide configurations can be fitted to a given tree with the minimum
number of substitutions (the number of variable nucleotides minus one), whereas
the other configurations require more than the minimum. The nucleotide sites with
the first group of configurations are called compatible sites, and those with the
latter group are called incompatible sites. The nucleotide site considered in the

Table 8
Maximum parsimony analysis of Hixson and Brown’s data
Configuration® Number of Number of substitutions for
observations

(& B G H (0] Tree 1 Tree 2 Tree 3 Tree 4
1 y y X X X 8 8 8 8 16
2 X X y X y 5 5 10 10 5
3 x X y y X 5 10 10 5) 10
4 % X X y ¥y 4 8 4 8 8
5 X y X y X 1 2 2 2 1
6 x y b X y 1 2 2 2 2
7 y x y X X 1 2 2 2 2
8 y X X X y 1 2 2 2 2
9 X X y y z 1 2 2 2 3

Total 27 41 42 41 49

2 x, y and z are different nucleotides.

above example is compatible to tree 11a and incompatible to tree 11b. This
difference is considered in the compatibility method (LeQuesne, 1969), and the
tree that has the largest number of sites that are mutually compatible is chosen.
Thus this method has a similarity with the MP method. When the number of
OTUs is 4 or 5, these two methods are identical.

Table 8 shows an example of the maximum parsimony analysis using Hixson
and Brown’s (1986) mitochondrial DNA sequence data. Only informative con-
figurations are listed in the table, and the number of nucleotide sites involved is
27 out of 939 sites. Four trees of Table 7 were examined and trees 1 and 3 are
equally parsimonious, though only one additional substitution is required for
tree 2. Two chimpanzee species are not clustered in tree 4, and this tree requires
much larger number of nucleotide substitutions.
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Because the maximum parsimony principle is simple and it is philosophically
related to Occam’s razor, it has become very popular not only in classical
taxonomy but in molecular evolution. When the overall amount of divergence is
small, the MP method may be appropriate. However, a gross underestimation of
branch lengths occurs when the amount of divergence is large (e.g., Saitou,
1989). Furthermore, the MP method is not appropriate for finding the tree
topology in some cases. Felsenstein (1978b) showed a condition in which the MP
method and the compatibility method is positively misleading. Thus we should be
cautious for the use of the MP method and the compatibility method.

In the standard maximum parsimony method, all changes are equally weighted,
since the method was originally applied for morphological data in which the
probability of change of each character is rarely known. In nucleotide sequence
data, however, we have some knowledge on the probability of nucleotide changes.
For example, transitional changes have been known to dominate the substitution
process in mitochondrial DNA. In this case, it may be more appropriate to apply
the MP method only for transversional changes (e.g., Saitou and Nei, 1986).
Noting this kind of property in the real data, Tateno (1990) proposed a general
method for giving different weights to each change of nucleotides before applying
the principle of maximum parsimony. Readers interested in this method may refer
to the original paper.

Recently Lake (1987) proposed a method called ‘evolutionary parsimony’.
While the standard MP method focuses at signals (compatible configurations for
a given tree), Lake’s method calls attention to noises (incompatible configura-
tions), and transitional changes and transversional changes are distinguished.
Unfortunately, the evolutionary parsimony is applicable only for four OTUs at
this stage. Readers who are interested in this method may refer to Lake (1987).

Cavender (1978, 1981) proposed a statistical test for the MP method. However,
he considered only four OTUs, and the results seems to be not appropriate for
real evolutionary data. Felsenstein (1985) introduced the bootstrap method for
tree comparison. This method involves resampling characters from one’s own
data, with replacement, to create a series of artificial samples of the same size as
the original data. The MP method is applied to each of these, and the variation
among the resulting trees are taken to indicate the size of the error in the original
data. For more detail, readers may refer to the original paper.

Templeton (1983) applied the Wilcoxon signed-rank test to the MP method for
restriction site data, and concluded that the clustering of chimpanzee and gorilla
are statistically significant by analyzing Ferris et al.’s (1981) data. However, Nei
and Tajima (1985, 1987) indicated drawbacks of the MP method through a
theoretical study, and a more detailed study of Li (1986) showed that Ferris
et al.’s (1981) data were not enough for obtaining statistically significant clustering
of chimpanzee and gorilla (see also Smouse and Li, 1988). Thus Templeton’s
(1983) method is not recommended.

When we compare relatively large number of OTUs and character states, it is
necessary to use computers. Platnick (1988) reviewed two computer programs for
the MP method: Paup (version 3.0) by D. L. Swofford and Hennig86
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(version 1.5) by J. S. Farris. PHYLIP (version 3.1) by J. Felsenstein also contains
several programs for the MP method and its variations.

4.3. Maximum likelihood method

The maximum likelihood (ML) method of tree-making was originally proposed by
Cavalli-Sforza and Edwards (1967) for gene frequency data. Later, Kashap and
Subas (1974) applied the ML method for three amino acid sequences, assuming
the constancy of evolutionary rate. Langley and Fitch (1974) also used the ML
method for estimating the branch lengths of a given tree, and compared these
estimates with those obtained by the MP method.

Felsenstein (1981) developed the ML method for finding an unrooted tree from
nucleotide sequence data. Let us explain the principle of his method. Consider
tree b of Figure 1 as an example. We first restrict our attention to a specific
nucleotide site, and assume that nucleotide N, was observed at exterior nodei
(1= A, B, C, D, or E). On the other hand, nucleotide N, at interior node j (j =
Y, or Z) is unknown, and it can be one of four nucleolldes Then the llkeh-
hood (L) of this site becomes

i = Z{gY Y(l:ZP\XPXAPXB:l[Z PYZPZDPZE]}~ 4.2)

where gy is the probability that node Y has nucleotide Ny, P, = Pr(N,, N, L;)
is the probability of observing nucleotide N, and N, at nodes i and Js respeulvely
with the branch length L,. Summation is for four p0551ble nucleotides, because
Ny, Ny, and N, are vafidbles To obtain Pr(N, N;, L,)), we must specify the
pattern of nucleotide substitution. If we use Jukes and Cantor’s (1969) random
substitution model,

: +aexp(—4L,/3) ifN,=N,, (4.3a)

Pr(N, N, L) = {j , ,
a—aexp(—4L;/3) ifN;#N,. (4.3b)

It should be noted that the reversibility of time is assumed in the above formu-
lation, a necessary assumption for unrooted trees. When different character-state
data such as amino acid sequences or restriction sites are to be used,
equation (4.3) should be modified by taking into account the nature of each
character state. But the essential nature of the likelihood function of
equation (4.2) remains the same.

Likelihood for each nucleotide site defined by equation (4.2) is then multiplied
for all sites, and usually log-likelihood is computed for different set of branch
lengths for a given tree topology, and the set that shows the highest log-likelihood
is numerically searched. Fukami and Tateno (1988) proved that there exists a
single ML point in the possible parameter range under the Jukes—Cantor model
of nucleotide substitution.

Saitou (1990) showed that the ML estimate of the number of nucleotide
substitutions between two nucleotide sequences is identical with that obtained by
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Jukes and Cantor’s (1969) and by Kimura’s (1980) method. In the case of more
than two sequences, however, this identity does not hold.

Original formulation of the ML method by Cavalli-Sforza and Edwards (1967)
included the probability of tree topology, assuming a Yule process. Felsenstein
(1981) took a different procedure, in which the ML value for each tree is com-
pared and the tree with the highest ML value is chosen. Nei (1987) argued that
the ML value computed in this way is conditional for each tree. Recently
Hasegawa and Kishino (1988) tried to justify Felsenstein’s (1981) procedure by
applying an information theory. When we consider a gene tree or gene genealogy
within a population, however, the probability of observing a specific tree topology
should be considered (see Tajima, 1983). Noting this theoretical problem, Saitou
(1988) proposed a step-wise tree searching algorithm for the ML method. This is
similar to that of the NJ method, in which a star-like tree is first considered. The
final tree is nested from a previous tree with a trifurcation, and the difference in
the maximum log-likelihood values between the two trees can be used for hypothe-
sis testing. Yet even this procedure has some theoretical problem (see Saitou,
1989b). Thus we should be cautious of conducting a statistical test based on the
ML method.

Let us apply the ML method to Hixson and Brown’s (1986) data. Program
DNAML of Felsenstein’s PHYLIP version 3.1 was used to obtain ML values for
four trees of Table 7. The transition/transversion ratio was set to be 5.0 and
observed frequency of nucleotides were used (Saitou and Imanishi, 1989). Tree 3
showed the highest likelihood value among four trees, and tree 4 was the worst.
Interestingly, the rank of these trees in terms of the ML values is identical with
that of the minimum evolution method (see Table 7), though the estimated branch
lengths (not shown) by the ML method were somewhat different to those of the
NJ method (Figure 6(d)).

Felsenstein (1987) developed the ‘maximum likelihood” method for DNA-DNA
hybridization data. However, he considered several components of experimental
errors, and this method is closely related to analysis of variance. Thus it may not
be considered as a standard ML method.

5. Relative efficiency of tree-making methods

Many different methods have been proposed for reconstructing phylogenetic trees,
as reviewed above. Then which method should we use? It is generally difficult to
compare different tree-making methods using actual data, because we rarely know
the true phylogenetic tree. Therefore, the relative efficiencies of tree-making
methods should be studied through computer simulated data, in which the true
tree is known. For example, Peacock and Boulter (1975) simulated amino acid
sequence data, Tateno and Nei (1978) simulated nucleotide sequence data, and
Nei et al. (1983) simulated gene frequency data. More recently, Fiala and Sokal
(1985) simulated morphological data by specifyiig a transition probability model.

Tateno et al. (1982) did a comprehensive study of tree reconstruction from
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nucleotide sequences. They considered a phylogenetic tree for eight or more
sequences, and a Poisson process was mainly used to simulate nucleotide sub-
stitutions for 300 nucleotides. They compared four distance methods (UPGMA,
FM, DW, and a modified DW). Their results indicated that the efficiency of each
method depended on various conditions. A similar but more extensive studies
have been done by Tateno (1985), Tateno and Tajima (1986), and Sourdis and
Krimbas (1987). Using a similar scheme of simulation as Tateno et al. (1982)
developed, Saitou and Nei (1987) compared six distance methods (UPGMA,
DW, a modified DW, Li’s (1981) method, Sattath and Tversky’s (1977) method,
and the NJ method), and they showed that their NJ method and Sattath and
Tversky’s method were generally better than the other distance methods.

Blanken et al. (1982) considered an addition of one nucleotide sequence to the
known phylogenetic tree, thus it is different from ordinary problem of tree con-
struction.

Saitou and Nei (1986) considered trees for relatively small number (up to five)
of nucleotide sequences, and derived the expected proportion of each nucleotide
configuration for a given tree. Using this information they simulated a multinomial
sampling of nucleotides to obtain the simulated sequences. The number of nucle-
otides required to obtain the correct tree with a probability of 95% has been
examined for UPGMA, the FM method, the DW method and the transformed
distance method (or the four point metric), and the MP method. Their results for
unrooted trees for four sequences show that UPGMA and the FM method are
inferior to the other methods. Li (1986) did a similar study for restriction site
data.

Hasegawa and Yano (1984) and Saitou (1988) compared the MP and ML
methods for the case of four nucleotide sequences, and they showed that the ML
method can find the correct tree with an appreciable proportion when the MP
method is positively misleading in the sense of Felsenstein (1978b).

Sourdis and Nei (1988) extended Saitou and Nei’s (1987) study by including
Faith’s (1985) modification of the DW method and the MP method for com-
parison. They showed that the MP method was generally inferior to some dis-
tance methods such as the NJ method. For the case of the MP method, they
examined trees that are close to the true tree, but this strategy has been shown
to be effective by a preliminary study in which all possible trees were examined
(Sourdis and Nei, 1988).

Recently, Saitou and Imanishi (1989) compared five exhaustive search methods
(MP, ML, FM, FM using S, and the minimum evolution (ME) method using
SBL) with the NJ method under the model tree for six sequences, and all 105
unrooted trees were examined, except for the ML method in which a limited
number of trees were examined. They showed that the NJ, ME, and ML methods
performed better than the other three methods. This result was obtained when the
evolutionary distance was used for distance methods. When the proportion of
nucleotide difference (a metric) was used, all distance methods showed a poor
performance. Li et al. (1988) compared the NJ method with Lake’s evolutionary
parsimony in the case of four OTUs. However, they used only the proportion of
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nucleotide difference. Therefore, the validity of their conclusion is questionable.

In summary, popular methods such as UPGMA and the FM method have
been shown to be generally inferior to the other methods. Considering the compu-
tation time when a relatively large number of OTUs is compared, a stepwise
clustering method such as the NJ method seems to be the first choice for
researchers interested in molecular phylogeny.
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