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[36] Maximum Likelihood Methods 

General Principle 

Application of the maximum likelihood (ML) method to the problem 
of phylogenetic tree reconstruction was first studied for the case of gene 
frequency data.’ Later, an ML algorithm for constructing unrooted phylo- 
genetic trees from nucleotide sequence data was developed by Felsenstein.* 
Recently, Saitou3 proposed a stepwise tree-searching algorithm for the ML 
method. This is similar to that of the neighbor-joining method,4 in which 
distance matrices are used. 

Let us first explain the general principle of the ML method for nucleo- 
tide sequence data. Consider the tree in Fig. 1. Let us ignore the root R and 
consider the tree as an unrooted tree. We first restrict our attention to a 
specific nucleotide site, and assume that nucleotide Ni was observed at 
sequence (node) i (i = A, B, C, D, or E). On the other hand, nucleotide Nj 
at node j (j = X, Y, or Z) is unknown, and it can be one of four nucleo- 
tides. Thus, the likelihood (L) for this site becomes 

L = 2 gYpYc c hx&A&B 1 ( c PYZ&DPzE NV NX I( NZ >1 (1) 
where gy is the probability that node Y has nucleotide NY, 
Pii E P(Ni&pd,) is the probability of observing nucleotides Ni and Nj in 
sequences i and j, respectively, and du is the expected number of nucleotide 
substitutions between these two sequences. Summation is for four possible 
nucleotides, because Nx , NY, and Nz are variables. To obtain P(Ni,Nj,du), 
we must specify the pattern of nucleotide substitution. If we use the 
random substitution model (the one-parameter model),s 

P(Ni,Nj,do) = $ + (3) exp(-4d,/3) (if Ni = 4) (24 
P(Ni,Nj,du) = $ - (4) exp(-4d,/3) (if w # 3) 0) 

’ L. L. Cavalli-Sforza and A. W. F. Edwards, Am. J. Hum. Genet. 19,233 (1967). 
2 J. Felsenstein, J. Mol. Evol. 17, 368 (1981). 
3 N. Saitou, J. Mol. Evol. 27,26 1 (1988). 
4 N. Saitou and M. Nei, Mol. Biol. Evol. 4,406 (1987). 
5 T. H. Jukes and C. R. Cantor, in “Mammalian Protein Metabolism” (H. N. Munro, ed.), 

p. 2 1. Academic Press, New York, 1969. 
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FIG. 1. Phylogenetic tree for five nucleotide sequences. 

If we assume the two-parameter modeL6 in which transitions and 
transversions can occur at different rates, the expressions that correspond 
to Eqs. (2a) and (2b) are somewhat complicated [see Eqs. (9a)-(9c)]. It is 
also true when other kinds of data such as amino acid sequences’ or 
restriction site data* are considered. However, the essential nature of the 
likelihood function remains the same. 

In any case, the likelihood for each nucleotide site defined by Eq. (1) is 
then multiplied for all sites and computed for many combinations of 
branch lengths for a given tree topology, and the combination that shows 
the highest likelihood is chosen as the ML solution. It has been proved that 
there exists a single ML point in the possible parameter range for a given 
tree topology when the one-parameter model of nucleotide substitution 
was assumed.9 

For the case of a rooted tree, it is necessary to assume a constant rate of 
nucleotide substitution. For example, the following constraints should be 
invoked for the tree in Fig. 1: du = dXB, d, = dzE, dye = dyx + dxA, 
and dRy + dye = dRz + dm . Because of this, the number of parameters to 
be estimated for n sequences is n - 1 for rooted trees, compared to 2n - 3 
parameters (branch lengths) for unrooted trees. 

Each nucleotide site is considered separately in Felsenstein’s method.* 
When each site is assumed to evolve at the same evolutionary rate, how- 
ever, a more essential unit of comparison for the ML method is the 
“nucleotide configuration.” A nucleotide configuration is the distribution 
pattern of nucleotides for a given set of sequences (see Tables I and II for 
examples). When the one-parameter model is assumed, the possible num- 
ber of configurations for n sequences is (4n-1 + 3 X 2”-’ + 2)/6.i” There 

6 M. Kimura, J. Mol. Evol. 16, 111 (1980). 
7 R. L. Kashyap and S. Subas, J. Theor. Biol. 47,75 (1974). 
* P. E. Smouse and W.-H. Li, Evolution 41, 1162 (1987). 
9 K. Fukami and Y. Tateno, J. Mol. Evol. 28,460 (1989). 

lo N. Saitou and M. Nei, J. Mol. Evol. 24, 189 (1986). 
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TABLE I 
NUCLEOTIDE CONFIGURATIONS FOR 

THREE SEQUENCES 

Configurationa Observed no. 

No. A B C Casea Caseb 

1 i i i 789 40 
2 i i j 98 20 
3 i j i 59 15 
4 j i i 50 5 
5 i j k 4 20 

l,ooo ii% 

a A, B, and C are different sequences, and i, j, 
and k are nucleotides that are different from 
each other. 

TABLE II 
NUCLEOTIDE CONFIGURATIONS FOR 

FOUR SEQUENCES 

Configurations 

No. A B C D Observedno. 

1 i i i i 
2 i i i j 
3 i i j i 
4 i j i i 
5 j i i i 
6 i i j j 
7 i j i j 
8 i j j i 
9 i i j k 

10 i j i k 
II j i i k 
12 j k i i 
13 j i k i 
14 i j k i 
15 i j k 1 

196 
61 
40 
77 
22 
12 
5 
8 

11 
21 
10 
12 
3 

15 
1 

500 

(1 A, B, C, and D are. sequences of Fig. 4, and i, j, 
k, and 1 are different nucleotides. 
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are 5, 15, and 5 1 configurations for three, four, and five sequences, respec- 
tively. 

If we consider the nucleotide configuration, the general formula for the 
likelihood becomes 

m! 
L=fpFxm,m, mr 

i-1 1. 2.... C. 

where c is the number of possible nucleotide configurations, U, the proba- 
bility of obtaining the ith configuration, mi the observed number of the ith 
configuration, and m the sum of mi values, or the total number of nucleo- 
tides compared. Because the number of configurations depends on the 
number of sequences compared, we consider the cases of two, three, four, 
and five sequences separately. The case of unrooted trees is first consid- 
ered. 

Two Sequences 

When we have only two sequences, there are only one unrooted and 
one rooted trees. Thus the ML solution for the rooted tree becomes identi- 
cal to that for the unrooted tree. 

Let us consider the one-parameter model of nucleotide substitution. 
There are only two configurations for this case: two nucleotides are the 
same (configuration 1) or different each other (configuration 2). Therefore, 
Eq. (3) becomes 

L=uyxP=x (ml + m2Y 
2 m,!m,! 

where U, = l/4 + (3/4) exp(-4d,/3) [see Eq. (2a)], and U2 = 3/4 - 
(3/4) exp(-4d,/3) [see Eq. (2b)]. First, we take the logarithm, 

log L = m, log[( 1 + 3x)/4] + m, log[(3 - 3x)/4] + constant (5) 
where x = exp(-4d,/3). To obtain the maximum likelihood estimate of 
d,, we differentiate log L with respect to x, and equate it to zero. This gives 

-4m,x+ 4m,x 
1+3x -= 3-3x 

0 (6) 

Solving Eq. (6) (note that x # 0 while dii is finite), 

k= 1 -4m2/3(m,+m2) (7) 

(8) 

Hence, 

d,= -(3/4)log(l - 47~3) 
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where rrti = m&r, + mz). Equation (8) is identical to the famous formula 
of Jukes and Cantor.5 

When the two-parameter model6 is assumed, we have to distinguish 
transitional and transversional differences. Thus, the number of configura- 
tions becomes three. Probabilities Vi (i = 1,2, 3) are given by 

u, = l/4 + p2/4 + pq/2 (no difference) VW 
u, = l/4 + p2/4 - pq/2 (transitional difference) Pb) 
u, = l/2 - p2/2 (transversional difference) (SC) 

where p = exp(- 2p) and q = exp(- 2o). (Y and /3 are the expected numbers 
of transitions and transversions, respectively. A likelihood function can be 
obtained using these Vi values, and we equate the differentiations of the log 
likelihood with p and q to be zero, as in the case of the one-parameter 
model. We solve the two equations, 

a = (1 - 2??2&92)“2 UW 
G = [l - (37% + %wmfi (lob) 

where mi is the observed number of the ith configuration and m = m, + 
m2 + m3. Thus, the total number of nucleotide substitutions d = a + 28 is 
estimated by 

13 = -(l/2) log(i%)) 
= -(l/2) log[( 1 - 2P - Q)( 1 - 2Q)“2] (11) 

where P = m,/m and Q = m,/m. Equation ( 11) is equivalent to Kimura’s 
estimation formula of evolutionary distance.6 

It is hypothesized that a similar correspondence between the ML esti- 
mate and the distance formula above can be applied to other types of 
nucleotide substitution models (see this volume, [33] for other models). If 
this conjecture is true, the ML method is identical with the distance 
method for the case of two sequences. 

Three Sequences 

&rooted Trees 

There is only one unrooted tree for three sequences (Fig. 2a). Let us 
assume the one-parameter model of nucleotide substitution. There are five 
nucleotide configurations (Table I). Probabilities Vi for a given set of three 
distances (dxA , dXB , and d,,) are given by 

U, = 4h(i,i,i), (1W 
U2 = 12h(i,ij) (i +A (12b) 
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U, = 12h(ij,i) 0 W (1W 
U, = 12h( j,i,i) 0 #.i) (12d) 
U, = 24h(i,j,k) (i#j#k) (124 

where i, j, and k are any one of the four nucleotides and 

(13) 

where g, is the probability of observing nucleotide x at node X and 
P,(d& = P(x,i,d,) [see Eqs. (2a) and (2b)]. By substituting these Ui 
values into Eq. (3), the likelihood function is obtained. 

An analytical solution for the ML value is not easily found, but the ML 
value can be obtained numerically by changing three distances (dxA, dXB , 
and d,,). In this case, however, the ML estimates of these distances are no 
longer the same as those obtained by the distance method,” in which case 
the branch length estimates are given by: 

Jti = (dm + dAc - d&/2 VW 
&x = (dm + 4c - dd/2 (14b) 
&x = (dAc + 4ic - daJI2 (14c) 

where dAB, dAc, and dec are given using Eq. (8), which is the ML estimate 
of each distance value. In applying Eq. (8) the proportion of nucleotide 
differences (a& between sequences i and j is estimated by 

7rm = (m3 + m4 + m#m (154 
XAC = (m2 + m4 + m&m (15b) 
7r, = (m2 + m3 + m&/m (15c) 

It is clear from Eqs. (15a)- ( 15~) that different sets of mi values (1 5 i 5 5) 
can give the same set of 7rB, nAc, and rrx values. Thus, the estimates of 
d d,,,andd xc by the distance method are not the ML estimates. 
Hyiever, it has been shown that the ML estimates of branch lengths are 
quite similar to those obtained by the distance method.r2 

Rooted Trees 

There are three rooted trees for three sequences, and we have two 
parameters (d, and d2) to be estimated (see Fig. 2b). Let us designate the 
tree in Fig. 2b as “tree 1,” in which sequences A and B are closer to each 
other than to C. As for the other two possible trees, sequences A and C are 
closer in tree 2, and B and C are closer in tree 3. 

‘I W. M. Fitch and E. Margoliash, Science 155,279 (1967). 
I2 N. Saitou, Ph.D. dissertation, University of Texas at Houston, 1986. 
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a b 

FIG. 2. (a) Unrooted tree and (b) rooted tree for three sequences. 

Assuming the one-parameter model, expressions for Ui for tree 1 be- 
come 

U,=(A+BaZ)/16 (164 
U2 = (3A - Ba*)/ 16 WW 
U3 = (C + Da*)/16 (164 
u, = u, (164 
U, = 2( C - Da*)/ 16 We) 

where A= 1 +3b*, B=6(1 +b)b2, C=3(1 -b*, D=6(1 -b)b*, and 
a = exp(- 4d, /3) and b = exp(- 4d2/3).3 [Equation (16e) corresponds to 
Eq. (4e) of Saitou,3 which was incorrect.] From these probabilities, one can 
evaluate the likelihood, L(l), of tree 1 under specific di and d2 values. 
Computation of L(2) and L(3) for trees 2 and 3, respectively, is done in a 
similar manner. 

Saitou3 derived the conditions for obtaining tree 1 as the ML estimate, 
or for obtaining the relationship L(1) > y2) and L(1) > L(3), i.e., m2 > 
m3 and m2 > m,, where mi is the observed number of the ith nucleotide 
configuration (see Table I). When this condition is satisfied, d- becomes 
the smallest among dAB, d,,, and dBc. Thus, tree 1 is chosen if we use 
UPGMA (unweighted pair-group method),” in which the pair of se- 
quences with the smallest distance is first clustered. This means that the 
topology of the UPGMA tree is always identical with that of the maximum 
likelihood tree, though the estimates of branch lengths (d, and d2) may be 
different to some extent. 

Figure 3 shows two examples of likelihood surfaces for artificial data 
(Cases a and b of Table 1).3 In Case a, the above condition (m2 > m3 and 
m2 > m4) is satisfied and tree 1 has the ML value at dl = 0.0259, whereas 
the trifurcating tree (d, = 0) gives the ML value for the other two trees (Fig. 

I3 R. Sokal and P. H. A. Swath, “Principles of Numerical Taxonomy.” Freeman, San 
Francisco, California, 1963. 
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FIG. 3. Two examples of likelihood surfaces for three possible trees. (a) and (b) correspond 
to Cases a and b in Table I. See text for details. 

3a). The likelihood surfaces represent the ML values for given d, values (an 
ML value was computed by varying d2 for a given d, value). 

The above condition is also satisfied in Case b, and tree 1 gives the 
highest ML value. However, tree 2 also gives an ML value higher than that 
for the trifurcating tree (Fig. 3b). In this case the following relationship is 
satisfied: 

4tc -C (dm + Ad/2 (17) 

Thus, if sequences A and C are first clustered (tree 2), a positive estimate of 
dl is obtained. This situation is different from that for Case a, in which a 
negative estimate of d, is obtained if tree 2 is considered. It seems that a 
positive estimate of d, corresponds to the ML value higher than that for the 
trifurcating tree.3 For tree 3, however, d, becomes negative, and the log- 
likelihood value decreases as the value of dl increases (Fig. 3b). 
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A D 

0.1 0.3 

0.05 X x Y 

0.4 0.2 

B C 
FIG. 4. Unrooted tree for four sequences. Numbers are lengths for each branch. 

Four Sequences 

Unrooted Trees 

There are three unrooted trees for four sequences, and we have to 
consider 15 nucleotide configurations (Table II). The likelihood function 
(not shown) can be obtained in a manner similar to the case of three 
sequences. 

Let us consider a numerical example. This is a result based on a 
simulated data set (see Table II), assuming the tree of Fig. 4.3 The tree 
in which sequences A and B are clustered (i.e., the true tree -a in Fig. 4) 
had the highest ML value (log likelihood is - 1004.2) with dJy = 0.026. 
The estimates of pther branch lengths were dm = 0.110, dxB = 0.36 1, 
dye = 0.188, and dm = 0.303. On the other hand, the same tree was ob- 
tained when we applied the neighbox-joining method for a di$ance 
matrix. -Branch length estimates were dxy = 0.033, dm = 0.10 1, dxB = 
0.366, d,, = 0.179, and d,, = 0.3 16, which were close to the estimates 
obtained by the ML method. The corresponding log-likelihood value for 
these estimates was - 1004.5, slightly lower than that of the ML estimate. 

The maximum likelihood value for the other two unrooted trees was 
obtained for the case with no interior branch (a quadrifurcating tree). This 
is analogous to the trifurcation of the rooted tree for three sequences. 
However, other trees may have ML values with positive estimates of the 
interior branch. 

Rooted Trees 

The number of possible rooted trees for four sequences is 15, and 3 of 
them (trees 3a, 3b, and 3c) are shown in Fig. 5. Ui of Eq. (3) is computed in 
a manner similar to the case of three sequences, and the likelihood func- 
tion can be obtained using these Vi values.3 

Although the ML method and UPGMA may no longer give the same 
tree on every occasion, it has been shown that the tree estimated by the ML 
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Level I ABCD 

Level II 
Tree 1 

ABCD ABCD 

Level 111 

Tree 2a Tree 2b 

ABCD ACBD BCAD 

dYl-y y WJ 

Tree 3a Tree ib Tree 3c 

FIG. 5. Three levels of the topological relationships for rooted trees for four sequences. 

method is similar to that obtained by UPGMA.3 In this connection, it 
should be noted that UPGMA gives least-squares estimates of branch 
lengths for the tree obtained. l4 That is, UPGMA minimizes the quantity, 
Z(d, - 2Lt,)2, where I is the rate of nucleotide substitution and tij is the 
time since divergence between sequences i and j. 

Let us explain Saitou’s algorithm3 using Fig. 5. This algorithm is remi- 
niscent of the neighbor-joining method. First the ML value for tree 1 
(Level I) is computed. There is no information on the clustering of se- 
quences with tree 1, whereas there are trifurcating and bifurcating points in 
trees at the next step (Level II). The ML values for all 10 trees at Level II 
are computed and are compared with each other. We choose the tree with 
the highest ML value among the 10. Suppose it is tree 2a. We then 
compute the ML values for trees 3a, 3b, and 3c, which are produced when 
the trifurcating point of tree 2a is resolved. In any case, the tree with the 
highest ML value is chosen as the final tree. In this way, we may be able to 
find the tree with the highest ML value. When the number of sequences is 

I4 R. Chakraborty, Can. .I. Genet. Cytol. 19,217 (1977). 
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large, this algorithm requires much less computational time compared 
with tree-by-tree examination. 

The two trees (2a and 2b) at Level II are related to tree 3a at Level III, 
and they may be used as null trees to test the significance of d, and d2 of 
tree 3a. If d, is not significantly greater than zero, we assume that tree 2a is 
the correct one and proceed to test the significance of d2 with tree 1 as the 
null tree. In general, there are n - 1 levels for trees with n sequences, and 
we can successively test the significance of all interior branches of a tree. 

Five Sequences 

There are 15 unrooted trees and 105 rooted trees for five sequences, 
and the number of possible nucleotide configurations under the one-pa- 
rameter model of nucleotide substitution is now 5 1. Construction of the 
likelihood function is straightforward as before. We consider only 
unrooted trees. 

Algorithm for Finding ML Tree 

Let us explain Saitou’s algorithm3 for the ML method for unrooted 
trees, with a numerical example of five nucleotide sequences of higher 
primates (human, common chimpanzee, pygmy chimpanzee, gorilla, and 
orangutan).i5 As in the case of rooted trees, we first compute the ML 
estimate for the Level I tree of Fig. 6. The initial value (d,) for the length of 
the branch between node X and sequence i may be computed from the 
distance matrix, applying the neighbor-joining method as follows:’ 

d~i=~d~-~~dj~ (18) 
j-l J<k 

The maximum log-likelihood value for the Level I tree was -638 for 
the example data. Ten different trees (Level II trees) are then considered, 
and the ML value for each tree is computed. These trees have one trifurca- 
tion and one bifurcation. The clustering of common and pygmy chimpan- 
zees gave the highest log-likelihood value of - 59 1. From each tree at Level 
II, three trees are produced if the trifurcation is resolved (Level III). The 
ML estimates of six branch lengths for the case of Level II are used as the 
initial values for the computation of the ML estimation for a tree at Level 
III (see Fig. 6). In this case, the seven-dimensional likelihood surface is 
numerically examined for three possible trees. The log-likelihood values 
were - 586 for tree 1 (chimpanzee and gorilla clustered), - 584 for tree 2 

I5 J. Hixson and W. M. Brown, Mol. Biol. Evol. 3, 1 (1986). 
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Level I H 
c-638) 

0 
241 

* 

G 
769 291 
157 130 

C P 

Level II 
(-59 I ) 

FIG. 6. Three steps to obtain the maximum likelihood tree for the data of Hixson and 
Brown.16 H, Human; C, common chimpanzee; P, pygmy chimpanzee; G, gorilla; 0, orang- 
utan. Estimated branch lengths for each tree should be divided by 10,000. Figures in paren- 
theses are the maximum log-likelihood values. 

(human and chimpanzee clustered), and - 583 for tree 3 (human and 
gorilla clustered). Thus, tree 3 was found to be the ML tree under this 
algorithm. This new algorithm can be extended to any number of se- 
quences, as in the case for rooted trees. 

Comparison with Other Methods 

When we applied other tree-making methods to the same data set, the 
choice of the tree depended on the method used.3 UFGMA chose tree 1; 
the neighbor-joining method found tree 3 as the best tree, and most of the 
branch lengths estimated by this method were quite similar to those of the 
ML method. On the other hand, the distance Wagner method16 chose tree 
2 when the proportion of different nucleotides was used as distance. 

‘6 J. Fan-is, Am. Nut. 106,645 (1972). 
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TABLE III 
RESULTS OF FOUR METHODS FOR PRIMATE SEQUENCE DATA” 

Method Tree 1 Tree2 Tree3 Tree4 

Fitch - Margoliash 0 +0.60 +0.47 +25.33 
Minimum evolution +1.10 +0.35 0 f6.59 
Maximum parsimony + 1 0 0 +8 
Maximum likelihood -3.97 -2.98 0 -33.86 

o Values for the Fitch - Margoliash and minimum evolution 
methods are percent standard deviation and sum of 
branch lengths X 1000, respectively. Values for the maxi- 
mum parsimony method are the required number of nu- 
cleotide substitutions, and those for the maximum likeli- 
hood method are the log likelihood. Values of the best tree 
are set to zero, and the other values represent differences 
from the best tree. From Saitou and Imanishi.” 

Phylogenetic trees are constructed step by step for methods such as 
UPGMA, the neighbor-joining method, and the distance Wagner method, 
and finally a single tree is obtained. This type of method can be called a 
“stepwise” clustering method.” In contrast, all possible trees (or a limited 
number of plausible trees) are compared under a certain criterion for 
Fitch - Margoliash method, I’ the maximum parsimony method,i* the 
minimum evolution method,” and the standard ML method.2 Results of 
these methods applied for the same data set as above are presented in Table 
III.” Trees l-3 in Table III correspond to those of Fig. 6, whereas pygmy 
chimpanzee and human as well as gorilla and orangutan are clustered in 
tree 4. 

The program DNAML of PHYLIP Version 3.1, developed by J. Fel- 
senstein, was used for the ML method. The transition/transversion ratio 
was set to be 5.0, and observed frequencies of nucleotides were used. Trees 
l-4 were examined using the “user tree” option. Because a different 
model of nucleotide substitution was used in this case, the log-likelihood 
values for trees 1 - 3 are different from those obtained using Saitou’s algo- 
rithm (Fig. 6). However, the order of the maximum log-likelihood values 
among the three trees is the same as that obtained above, and tree 3 was 
chosen. The ML value for tree 4 was considerably lower than those for the 
other three trees. This is apparently because the highly probable clustering 
of common and pygmy chimpanzees was not realized in this tree. 

As for the other methods, trees 1 and 3 were chosen by the method of 

I7 N. Saitou and T. Imanishi, Mol. Biol. Evoi. 6,5 14 (1989). 
I8 W. M. Fitch, Am. Natur. 111,223 (1977). 
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Fitch - Margoliash and the minimum evolution method, respectively. In- 
terestingly, the rank of these trees in terms of the minimum evolution 
method was the same as that of the ML method (see Table III). Finally, the 
maximum parsimony method found both trees 2 and 3 as equally parsimo- 
nious. These inconsistent results indicate that the nucleotide sequence data 
used are not sufficient to determine the branching order among human, 
chimpanzee, and gorilla. This seems to be consistent with the simulation 
result of Saitou and Neil0 

Discussion 

The original formulation of the ML method’ included the probability 
of tree topology, which is given by assuming a Yule process. FelsensteinZ 
took a different approach, in which the ML value for each tree is computed 
and the tree with the highest ML value is chosen. However, the likelihood 
function to be used varies from tree to tree, so the ML values for different 
trees are conditional and cannot be compared in the standard way.3*L9 It 
has been claimedZo that this problem can be avoided by applying informa- 
tion theory. Yet there still remains a paradox. 

Let us consider Fig. 3b. In this case both trees 1 and 2 had higher ML 
values than that for the trifurcating tree where d, is necessarily zero. 
Because this trifurcating tree is a submodel of either tree 1 or 2, we may use 
the likelihood ratio test for the significance of these two trees. As Felsen- 
stein2i indicated, however, it is possible that both trees 1 and 2 are signifi- 
cantly better than the trifurcating tree. Then which tree should we choose? 
This paradox seems to apply in trees l-3 of Fig. 6, since the log-likelihood 
values for all these trees are considerably larger than that of Level II tree. 
Therefore, we should be cautious in applying the ML method for the 
problem of phylogenetic tree estimation. 

Nevertheless, the ML method may still be useful for practical purposes. 
For example, it has been shown by computer simulations3*22 that the ML 
method can find the correct tree with an appreciable proportion even when 
the maximum parsimony method is positively misleading under certain 
conditions for four sequences. 23 Saitou and Imanishi” compared the rela- 
tive efficiency of the five tree-making methods (maximum parsimony, 
maximum likelihood, Fitch - Margoliash, minimum evolution, and neigh- 

I9 M. Nei, “Molecular Evolutionary Genetics.” Columbia Univ. Press, New York, 1987. 
2o T. Kishino and M. Hasegawa, J. Mol. Evol. 29, 170 (1989). 
*I J. Felsenstein, in “Statistical Analysis of DNA Sequence Data” (B. S. Weir, ed.), p. 133. 

Dekker, New York, 1983. 
22 M. Hasegawa and T. Yano, Bull. Biomed. Sot. Jpn. 5, 1 (1984). 
23 J. Felsenstein, Cyst. Zool. 27,401 (1978). 
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bor-joining methods). They used a computer simulation under the model 
tree for six sequences, and showed that the neighbor-joining method, the 
minimum evolution method, and the ML method performed better than 
Fitch - Margoliash and maximum parsimony methods. 

From a practical point of view, however, a distance matrix method, 
such as the neighbor-joining method, seems to be the first choice for 
determining tree topology. The maximum likelihood method is time con- 
suming, and should better be used after a certain number of prospective 
trees are chosen by some distance methods. For a review of distance matrix 
methods for phylogenetic tree construction, readers may refer to Neil9 and 
Saitou.24 

24 N. Saitou, in “Handbook of Statistics, Volume 8: Statistical Methods for Biological and 
Medical Sciences” (C. R. Rao and R. Chakraborty, eds.). North-Holland, New York, in 
press. 


