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SUmmary. A mathematical theory for computing 
the probabilities of  various nucleotide configura- 
tions among related species is developed, and the 
larobability of  obtaining the correct tree (topology) 
from nucleotide sequence data is evaluated using 
models of  evolutionary trees that are close to the 
tree of  mitochondrial DNAs from human, chim- 
Panzee, gorilla, orangutan, and gibbon. Special at- 
tention is given to the number of  nucleotides re- 
quired to resolve the branching order among the 
three most closely related organisms (human, chim- 
panzee, and gorilla). If  the extent of  DNA divergence 
is close to that obtained by Brown et al. for mito- 
ehondrial DNA and if sequence data are available 
Only for the three most closely related organisms, 
the number of  nucleotides (m*) required to obtain 
the correct tree with a probability of  95% is about 
4700. If sequence data for two outgroup species (or- 
angutan and gibbon) are available, m* becomes about 
2600-2700 when the transformed distance, dis- 
tance-Wagner, maximum parsimony, or compati- 
bility method is used. In the unweighted pair-group 
method, m* is not affected by the availability of  
tlata from outgroup species. When these five differ- 
ent tree-making methods, as well as Fitch and Mar- 
goliash's method, are applied to the mitochondrial 
b N A  data (1834 bp) obtained by Brown et al. and 
by Hixson and Brown, they all give the same phy- 
logenetic tree, in which human and chimpanzee are 
roost closely related. However, the trees considered 
here are "gene trees," and to obtain the correct 
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"'species tree," sequence data for several indepen- 
dent loci must be used. 

Key words: Molecular phylogeny -- Nucleotide 
substitution -- Tree-making methods -- Hominoid 
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Introduction 

During the last two decades, the evolutionary re- 
lationships of  hominoid species have been studied 
extensively using molecular data. It is now generally 
accepted among investigators of  molecular evolu- 
tion that gibbons and orangutans diverged from the 
human line substantially earlier than chimpanzees 
and gorillas did. However, no consensus has been 
reached about the branching order among humans, 
chimpanzees, and gorillas (Ferris et al. 1981; Brown 
et al. 1982; Templeton 1983; Sibley and Ahlquist 
1984; Bianchi et al. 1985; Hasegawa et al. 1985; Nei 
et al. 1985; Ueda et al. 1985; Hixson and Brown 
1986; Koop et al. 1986). One of  the difficulties in 
resolving this problem is that the three species are 
so closely related that a large amount of  molecular 
data is required. 

Sibley and Ahlquist's (1984) study was based on 
a hybridization experiment with a large amount of  
"single-copy" DNA, and their conclusion seems to 
be quite reasonable. However, since the measure- 
ment of  ATsoH is subject to a rather large experi- 
mental error, it is advisable to examine the problem 
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Fig. 1. Model tree for three nueleotide sequences from species 
A, B, and C. See text for details 

using DNA sequences. One of  the most extensive 
sets of sequence data available is Brown et al.'s (1982) 
for mitochondrial DNA; they sequenced 896 nu- 
cleotides. Nei et al.'s (1985) reanalysis of  the data, 
however, indicates that this number of  nucleotides 
is too small to allow discrimination among the three 
alternative branching orders possible for the three 
species. How many nucleotides are then required to 
resolve the branching order among humans, chim- 
panzees, and gorillas? 

The purpose of this paper is to examine this prob- 
lem. More specifically, we will study the probability 
of obtaining the correct topology (branching order) 
for a given number ofnucleotides, considering DNA 
sequences whose divergences are similar to those of 
mitochondrial DNA. Various methods of construct- 
ing phylogenetic trees will be considered, since the 
probability of obtaining the correct topology is not 
the same for all tree-making methods. The tree- 
making methods considered here are the unweight- 
ed pair-group method (UPGMA) (Sneath and Sokal 
1973), the distance-Wagner method (Farris 1972), 
Fitch and Margoliash's (1967) method, the trans- 
formed distance method (Farris 1977; Klotz and 
Blanken 1981; Li 1981), the maximum parsimony 
method (Eck and Dayhoff 1966; Fitch 1977), and 
the compatibility method (Le Quesne 1969). The 
first three methods estimate both the topology and 
branch lengths of a tree, whereas the other three 
obtain only the topology. In the first four methods, 
genetic distances are computed for all species pairs, 
and an evolutionary tree is constructed using infor- 
mation on genetic distances. In the remaining two 
methods, a tree is constructed by comparing nu- 
cleotide sequences site by site. 

Before going into a detailed discussion, we should 
mention that two types of errors occur in the con- 
struction of phylogenetic trees: topological errors 
and branch length errors (Tateno et al. 1982). In this 
paper, we will consider only topological errors. We 
will also consider the case where only one DNA 
sequence (gene) is studied from each species and 

assume that the evolutionary pathway of the genes 
studied (gene tree) is identical with that of the species 
considered (species tree), though this assumption 
does not always hold in the presence of polymor- 
phism within species (see Discussion). When the 
number ofnucleotides examined is small, however, 
a phylogenetic tree reconstructed from a set of  genes 
may not always give the true phylogeny of  the genes 
even if we disregard the discrepancy between the 
gene tree and the species tree. Our main concern in 
this paper will be the accuracy of a reconstructed 
tree under the assumption that the true gene tree is 
identical with the species tree. 

We will be concerned primarily with the resolu- 
tion of  the branching order among humans, chim- 
panzees, and gorillas. However, the resolution of 
the branching order among three species is a fun- 
damental problem in phylogenetic studies, and the 
results obtained here will be applicable to any sim- 
ilar situation. 

Theoretical Basis 

Although we do not know the real evolutionary re- 
lationship of humans, chimpanzees, and gorillas, it 
can be represented by the diagram in Fig. 1. Here 
A, B, and C each stand for one of the three species, 
whereas T and t2 are the times since divergence 
between A and C and between A and B, respectively, 
with tt = T - r E .  In reality, the true relationship is 
not known, and is inferred from the nucleotide se- 
quences of the genes sampled from the three species. 
If  the rate ofnucleotide substitution is constant over 
time, we should be able to determine the relation" 
ship by examining a large number of nucleotides. If 
the number of nucleotides examined is small, the 
tree inferred is not necessarily the correct one be- 
cause of  sampling error. Our task is to determine 
the relationship between the number of nucleotides 
examined and the probability of  obtaining the cot- 
rect tree (or topology)�9 To compute this probability, 
we must know the probabilities of different nucleo" 
tide configurations among the species studied�9 

Probabilities of Nucleotide Configurations 

The basic units of information required for tree 
making are the nucleotide differences at each nu- 
cleotide site among the species compared; the rel- 
ative frequencies of  different nucleotide configura- 
lions among all sites determine the branching patte~ 
of the species. Let i, j, and k be the nucleotides for 
species A, B, and C, respectively, at a given nucleo- 
tide site (see Fig. 1). Here i, j, and k are any of the 
four nucleotides A, T, C, and G. In the case of three 



Species, there are five different nucleotide configu- 
rations; they are listed in Table  1. In general, the 
number (c) o f  possible nucleotide configurations for 
n Species is given by 

c = ( 4 " - 1  + 3"2 n-I + 2)/6 (I) 

To compute  the probabil i ty  o f  obtaining the cor- 
rect tree for a given number  o f  nucleotides exam- 
ined, we must  know the relative frequencies o f  the 
nucleotide configurations. We use two models  o f  
nUcleotide substi tut ion to determine the relative fre- 
quencies. The  first model  is that  o f  Jukes and Cantor  
(1969), in which all nucleotides (A, T, C, and G) 
change to one another  with equal probabili ty.  In 
this model  (the one-parameter  model),  the proba-  
bility that  the nucleotide for a given site at t ime t 
is identical with that at t ime 0 is 

Pii(t) = 1/4 + 3/4 exp(-4/3 ),t) (2a) 

and the probability that nucleofide i at t ime 0 changes 
to nucleotide j at t ime t is 

p0(t ) = 1/4 _ 1/4 exp(_4/3M) (2b) 

Where h is the rate ofnucleot ide  substi tution per site 
Per year (see, e.g., Nei  and Taj ima 1985). 

The second model  is Kimura ' s  (1980) two-param- 
eter model,  where transit ional nucleotide changes 
(A ,~ G and T .~ C) are assumed to occur with a 
frequency different f rom that for transversional nu- 
cleotide changes (all other  changes). This model  is 
raore appropriate  to mitochondria l  D N A  (mtDNA) 
than the first model ,  because in m tDNA,  transi- 
tional changes are known to occur at a much  higher 
rate than transversional  changes. In this model,  Pi~(t) 
and p0(t) are given by 

P~(t) = 1/4 + 1/4 exp(-4/3t)  
+ 1/z e x p [ - 2 ( a  + /3)t] (3a) 

Pij(t) = 1/4 + 1/4 exp(-4/3t)  
- 1/2 e x p [ - 2 ( a  +/3)t](transition) (3b) 

Pij(t) = 1/4 _ 1/4 exp(-4/3t)  (transversion) (3c) 

Where a and/3 are the rates o f  transitional and trans- 
Versional substitutions, respectively, and k is given 
by ot + 2/3. In applying this model,  we assume 
e//3 = 20, following Brown et al.'s (1982) observa- 
tion. Therefore, /3 = (1/22))~ or a = (10/11)3,. Thus,  
if we know h, we can easily determine a and/3. 

It should be noted that the above  two models  are 
not always realistic, particularly when kT is large. 
The effect o f  violat ion o f  the underlying assump- 
tions o f  the two models  will be discussed later. 

Using the above two models,  we can now evaluate 
the probabilit ies of  obtaining different nucleotide 
.Configurations. For  example,  the probabil i ty o f  hay-  
lag nucleotides i, j, and k at a given nucleotide site 

Table 1. Nucleotide configurations for three species 
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Species" Probability (Fi) b 
Configu- 
ration A B C R = 0 . 2  R = 0 . 8  

Ob- 
served 
no. of 
sites 

C~ i i i 0.870 0.897 mt 
C2 i i j 0.054 0.083 m2 
C3 i j i 0�9 0.009 m3 
C4 j i i 0�9 0.009 m4 
C5 i j k 0.004 0.001 m5 

a i, j, and k are three different nucleotides 
b AT = 0.05 and the one-parameter model is used�9 R = t~/T (see 

text) 

for species A, B, and C in the evolut ionary  tree o f  
Fig. 1 is 

f(i, j, k) = ~ getPek(t, + t2) 
g 

" ~  {Pem(h)Pmi(t2)Pmj(t2)}] (4) 
m 

where g e is the probabil i ty ofnuc leo t ide  g occurring 
at this site. We assume that  the nucleotide frequen- 
cies in D N A  sequences are at equil ibrium, so that  
ge = 0.25 for all nucleotides in the above two models. 
Therefore,  f(i, j, k) can be obta ined i f  we specify tl 
and t> 

We ment ioned  above that there are five different 
nucleotide configurations for three species (Table 1). 
The expected frequencies o f  the five configurations 
(Fi) can be obta ined by summing the appropriate  
values o f  f(i, j, k). The  values o f  Fi for ~,T = 0.05 
and the one-parameter  model  are given in Table  1. 
The expected frequencies o f  nucleotide configura- 
tions with more  than three species can be obta ined 
in the same way. 

In practice, only a l imited number  o f  nucleotides 
are used for the construct ion o f  phylogenetic trees. 
Let  m be the total number  o f  nucleotides examined  
for a gene and assume that the rate o f  nucleotide 
substitution is the same for all sites. The  probabil i ty  
o f  observing configuration 1 (CO at m~ nucleot ide 
sites, Cz at m2 sites . . . . .  and Ck at mk nucleotide 
sites (ml + m2 + . . .  + mk = m) is then given by 

m! k 
P = H fim'  (5) 

ml! m2[ . . . mk! i~ 

where k is the number  o f  different possible config- 
urations. We call a given set o f  nucleotide config- 
urations among m nucleotide sites a co m p o u n d  nu- 
cleotide configuration. 

Probability of Obtaining the Correct Tree 

We are now in a posit ion to compute  the probabil i ty 
of  obtaining the correct  tree for a given number  of  
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nucleotides examined.  This probabil i ty depends not  
only on the t ree-making method  but  also on the 
availability of  outgroup species. Informat ion  on 
outgroup species is impor tan t  for all the methods  
except U P G M A .  In the present case, orangutans and 
gibbons can be used as outgroup species i f  D N A  
sequence data are available. In the following, we 
consider the cases o f  three species (no outgroup 
species), four species (one outgroup species), and 
five species (two outgroup species) separately. 

Case 1. Three Species 

The only t ree-making method  that  gives a rooted 
tree is U P G M A .  In this method,  the topology and 
branch lengths are uniquely de termined from dis- 
tance values. Let  dAa , dAc , and duc be the distances 
between species A and B, A and C, and B and C, 
respectively. In the following, we measure the dis- 
tances in terms o f  nucleotide differences instead o f  
the number  o f  nucleotide substitutions, which may  
be est imated by Jukes and Cantor 's  (1969) method,  
because the probabil i ty o f  obtaining the correct  to- 
pology is nearly the same for the two different dis- 
tance measures (N. Saitou and M. Nei, unpub-  
lished). In this case, the genetic distances as measured 
by the number  o f  nucleotide differences per D N A  
sequence can be expressed as 

dAB = m3 + m4 + ma = m -- ml -- m2 

d A c = m 2  + m 4 +  m s = m - - m 1  -- m3 (6) 

dBc = m2 + m3 + ms = m -- mt -- m4 

where mi is the observed number  of  sites with the 
i-th configuration. 

In U P G M A ,  the two species with the smallest 
distance between them are clustered first. This  clus- 
ter is then regarded as a single species, and a new 
set of  genetic distances is computed.  The  two species 
showing the smallest distance in this new distance 
matrix are again clustered. This process is cont inued 
until all the species are clustered into a single tree. 
This method  produces a rooted rather  than an un- 
rooted tree. It is therefore clear that the condit ion 
for obtaining the correct  tree for the case o f  three 
species in Fig. 1 is 

dan < dAc and dAB < dBc (7) 

This is equivalent to the condit ion m2 > m3 and 
m2 > m4. We have already der ived a formula  for 
computing the probabil i ty o f  each compound  nu- 
cleotide configuration. Therefore,  i f  we collect all 
probabilities o f  compound  configurations satisfying 
the above condition, the probabil i ty o f  obtaining 
the correct tree is obtained. 

The other  distance matr ix  methods  (Fitch and 
Margoliash's method,  the distance-Wagner method,  

and the t ransformed distance method)  are intended 
to construct  unrooted  trees [see Nei  (in press) for 
the computat ional  procedures  for these methods]. 
Since there is only one unrooted  topology for three 
species, we must  place the root. The  root  can be 
placed at the midpoin t  o f  the pathway that connects 
the two most  divergent species. In the case o f  three 
species, this procedure again gives condi t ion (7) for 
obtaining the correct  rooted tree. Therefore,  the 
probabil i ty of  obtaining the correct  rooted tree is 
the same for all distance matr ix  methods.  The  max- 
im u m  pars imony and the compatibi l i ty  methods 
also obtain unrooted  trees. Therefore,  we can apply 
the same me thod  of  placing the root. 

Let us now examine the relationship between the 
probabil i ty o f  obtaining the correct tree (Pc) and the 
number  o f  nucleotides examined by  using the two 
nucleotide substi tution models  ment ioned  earlier. 
When the number  o f  nucleotides is relatively small 
(m _< 100), it is possible to consider  all possible 
combinat ions  o f  m~, m~ . . . . .  mk and to evaluate 
Pc using Eq. (5). When m is large, the number  of 
different compound  configurations becomes astro- 
nomical.  Therefore,  we used the following simula- 
tion method  to evaluate Pc for m > 100: Using Eq. 
(5) and pseudorandom numbers,  we first deter- 
mined ml, mE . . . . .  mk for a given sequence length 
(one replication). We then computed  the n u m b er  of 
nucleotide differences (distances) for all pairs of  
species using Eq. (6). F rom these distances and con- 
dit ion (7), we determined whether  or not  the tree 
reconstructed was correct. This  computa t ion  was 
repeated 10,000 times, and the relative frequency 
o f  obtaining the correct  topology was used as an 
approximat ion  to Pc- 

The relationship between the probabil i ty o f  ob- 
taining the correct  tree and the n u m b er  o f  nucleo- 
tides depends not  only on the tree-making method 
but  also on kT and the ratio R = h / T  in Fig. 1. 
Therefore,  we first examined the relationships be- 
tween Pc and R for various values o f k T  for the case 
m = 100, using the one-parameter  model  o f  nu- 
cleotide substitution. The results are presented in 
Fig. 2. As expected, Pc increases as R increases, but 
i f k T  is small, Pc increases very  slowly and does not 
reach 1 even when R = 1. The reason for this is that 
when kT and m are small, there may  be no nucleo- 
tide sites where substitution has occurred in the 
branch between nodes X and Y (see Fig. 1), in which 
case no trees can be constructed. When XT is much 
smaller than 1, the probabil i ty of  there being no 
nucleotide differences in a sequence o f  m nucleo- 
tides is Piim(T) = [1/4 + (3/4)exp(-4XT/3)]m. When 
R = 1, the condi t ion dab < dnc and dAB < dBc 
reduces to 0 < dAc (=dBc). This condi t ion is violated 
if  there is no substi tution in ei ther the A or the C 
branch. Therefore,  the probabil i ty o f  obtaining the 



Correct tree for R = 1 is given by 1 - Pii2m(T). This  
Value is 0.18 for XT = 0.001 and  0.63 for XT = 
0.005, in agreement  with Fig. 2. 

Figure 2 shows that  Pc generally increases as XT 
increases for a given value o f  R. In  the case o f  R = 
0.5, the Pc values for XT = 0.05, 0.1, and  0.5 are 
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big. 2. Probability (Pc) of obtaining the correct topology for 
three species for various values of XT (A, 0.001; B, 0.005; C, 
0.010; D, 0.050; E, 0.100; F, 0.500; G, 1.000; H, 2.000). The 
~ model is used. The number (m) of nucleotides 
cOmPared is 100 
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0.865, 0.957, and  0.997, respect ively (curves D, E, 
and  F in Fig. 2). I f  XT exceeds 0.5, however ,  Pc 
becomes  smaller  than  for XT = 0.5 for  all values  o f  
R. In  the case o f  humans ,  ch impanzees ,  and  gorillas, 
R is p robab ly  less than  0.2 (Sibley and  Ahlquis t  
1984 and Fig. 10). Therefore ,  Pc is smal ler  than  0.6 
even i fXT = 0.5. This  indicates that  when the n u m -  
ber  o f  nucleotides examined  is as small  as 100, the 
probabi l i ty  o f  obta ining the correct  topology cannot  
be very high, wha tever  the value ofXT. Reanalyzing 
Brown et al. 's ( t982)  sequence da ta  for m i t o c h o n -  
drial DNA,  Net  et al. (1985) es t imated  that  the AT 
value for h u m a n s  and gorillas is abou t  0.05. I f  this 
es t imate  is correct,  the probabi l i ty  that  the evolu-  
t ionary tree constructed f rom abou t  100 nucleot ides 
will be erroneous is m o r e  than 50%. 

Figure 3 shows the relat ionships  between Pc and  
m for var ious  values o f  R for the case o fXT = 0.05. 
When  R is as high as 0.8, Pc rapidly increases with 
increasing m. In this case, the n u m b e r  o fnuc leo t ides  
(m*) required for obtaining the correct  tree with a 
probabi l i ty  o f  0.95 is less than  I00.  This  n u m b e r  
increases rapidly as R decreases. The  values  o f  m* 
for R = 0.2, 0.15, and  0.1 are abou t  1100, 2000, 
and 4200, respectively. As men t ioned  earlier, the R 
value for the human-ch impanzee-gor i l l a  d ivergence 
is likely to be smaller  than  0.2. Therefore ,  a large 
n u m b e r  o f  nucleotides is required to resolve the 
branching order. Brown et al. (1982) sequenced 896 
nucleotides f rom a por t ion  o f  mi tochondr ia l  D N A .  
This  n u m b e r  is apparent ly  too small  to resolve the 
p rob lem o f  branching order.  

The  above  conclusion was der ived using the one-  
pa rame te r  mode l  o f  nucleotide substi tut ion.  H o w -  
ever, in the case o f  three species, essentially the same 

.8 .6  .4 
1 .0 -  ~ - $ - - -  , . i i . ~ I I 

. . . .  ! 3  ' ~ " 

2 5  

0 .0  

PC 0.~ .I 05 

Fig. 3. Probabilities (Po) of obtaining 
the correct topology for three species. 

0.4 Arrows indicate the number of nucleo- 
tides required for obtaining the correct 
topology with a probability of 0.95. Dif- 
ferent curves represent different values 
of R = t /T  as marked. The one-pa- 

0.2 , , rameter model is used 
0 1000 2000 3000 4000 

Nualber of nucleotides 
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conclusion is obtained using the two-parameter 
model mentioned earlier (see discussion of UPGMA 
in the following section). 

Case 2. Four Species 

We consider the case where one outgroup species is 
known (D in Fig. 4). Our primary goal is still to find 
the branching order among species A, B, and C. 
When DNA sequence data are available from four 
species, there are 15 different types of  nucleotide 

I 0.0451 
o.n o.oo5~: 0.04 

0.02 I 

A B C D E 

I 

(A) 

I 0.05 
0.11 0.01 O, 03 

0.02 

configurations (Table 2). The distance dis between 
species i and j can be expressed in terms of the 
observed numbers of these nucleotide configura" 
tions, as in the case of three species. The probabil- 
ities of  these configurations for the two different 
models ofnucleotide substitution are given in Table 
2 for the case of tree A in Fig. 4. 

The availability of outgroup species does not af- 
fect the tree constructed by UPGMA, because that 
method does not use information on outgrouP 
species. In other tree-making methods, however, the 
availability of outgroup species substantially im- 
proves the accuracy of  the reconstructed tree. 

Transformed Distance Method. In this method, 
the original distance (dij) between species i and j is 
transformed into a new distance by the following 
equation, and the transformed distance (d'ij) is used 
for tree making: 

d'ij = (dij - diD -- diD)/2 + C 

where D refers to the outgroup species and c is a 
constant to prevent dij from becoming negative [see 
Farris (1977) or Nei (in press) for the details of the 
procedure]. The topology of a tree is then construct- 
ed from the values of d 'AB , d ' A c  , and d'nc using 
UPGMA. The condition for obtaining the correct 
tree is therefore given by the inequalities d 'AB < d'AC 
and d 'AB "< d'ac or 

dAB + d~D < dAc + d~D 

A B C D E 

I 
L - - T - - ~  

I 
(B) 

T w o  phylogenet ic  t rees used  for  the  cases o f  four  Fig. 4A,  B. (8 )  
and  five species. A, B, C, any  o f  h u m a n ,  ch impanzee ,  and  gorilla; 
D,  orangutan;  E, g ibbon  dAB + dcD < dAD + dBc 

Table  2. Nucleo t ide  conf igura t ions  for  four  species 

Probabi l i ty  ~ 

One-  T w o -  
Configu- Species~ Meth~  p a r a m e t e r  p a r a m e t e r  Ob se rv ed  

ra t ion  A B C D M P  T D  U P  m o d e l  m o d e l  no.  o f  sites 
......- 

Ci  

C2 
C3 
C4 
C5 
C6 
C, 
C8 
C9 
Cm 

C)2 
Ci3 
C)4 

i j j + + + 0.0061 0.0093 m 
j i j + + + 0 .0022 0.0052 m2 
j j i + + + 0.0022 0.0052 m3 
i j k - + + 0 .0040 0.0011 m4 
j i k - + + 0 .0032 0.0008 ms 
i i k - + + 0 .0032 0.0008 m6 
k i i - + - 0 .0014 0 .0004 m7 
i k i - + - 0.0013 0.0003 m8 
j k i - + - 0 .0013 0.0003 m9 
i j i - - + 0 .0390 0.0391 mr0 
j i i - - + 0 .0349 0.0349 m ~  
i i i - - + 0 .0349 0.0349 m~2 
i i j - - - 0 .1034 0.1006 ml3 
j k e - - - 0 .0002 0.0000 m,4 
i i i - - - 0 .7626 0 .7670 m, s  

" i ,  j ,  k, a n d  e represent  different nucleot ides  

b Pluses  and  m i n u s e s  s tand  for  the  nucleot ide  conf igura t ions  tha t  are used and  no t  used,  respectively,  unde r  the  condi t ions  o f  the  tree- 
mak ing  me thods :  MP,  m a x i m u m  p a r s i m o n y  me thod ;  TD,  t r a n s f o r m e d  dis tance  me thod ;  UP ,  unweigh ted  pa i r -g roup  m e t h o d  
Tree  A o f  Fig. 4 is used 
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Distance- Wagner Method. In this method, the two 
most closely related species are clustered first, and 
a third species that is most closely related to this 
cluster is then joined with minimum branch lengths. 
This procedure is continued until all species are clus- 
tered into a single tree. In the case of the four species 
in Fig. 4, species D is usually the last to join the 
cluster because it is an outgroup species. Let us as- 
SUme that D is indeed the last to join and consider 
the condition for obtaining the correct tree. It is clear 
from Fig. 5 that to obtain the correct tree, one must 
COnnect D to the branch between C and W. There- 
fore, we have 

dD3,Z < dDl,x and dD3.z < dD2,V (9) 

.Where the dij represent the branch lengths of the tree 
In Fig. 5. According to Farris (1972), these branch 
lengths are estimated by 

dDt.X = ( d o w  + dAD -- dAw)/2  

dD2.V = (dDw + dBD -- dBw)/2 (10) 

dD3,Z = (dDw + d c o  --  dcw)/2 

Where 

clAW = (dAB + dAC -- dBC)/2 

dBw = (dAB + dBc --  dAc) /2  (l 1) 

dcw = ( d h c  + dBc --  dAl3)/2 

dDw = maX(dAD - dAw, dBD -- dBw, dCD -- d c w )  

FIere, max(a, b, c) denotes the maximum value 
among a, b, and c. Substituting Eqs. (10) into Eqs. 
(9), we have 

ClcD -- (dAc + dBc - dAB)/2 

< dAD -- (dAB + dAC -- d•c)/2 

(12) 

dCD -- (dAc + dBc --  dAB)/2 

< dBD -- (dAB + dac - dAc)/2 

Which reduces to 

dAB + dCD < dAC + dBD and 
dAB + dCD < dAD + dBC (13) 

These inequalities are identical with Eqs. (8). 
Although species D will usually be the last to join 

the cluster, any other species can be the last because 
~ effects. However, it can be shown that the 
above condition holds for all cases. It can also be 
Shown that the same condition holds for Tateno et 
al.'s (1982) and Faith's (1985) modifications of the 
distance-Wagner method. 

Fitch and Margoliash's Method. This method is 
intended to choose the tree with the smallest per- 
centage standard deviation of patristic (estimated) 

D3 

A ~' C 

I 
J 

/ 
t 

I 
t D2 

D1 

B 
Fig. 5. Three possible ways (D1-D3) for species D to be con- 
nected to the unrooted tree of species A, B, and C 

distances (Pij) from observed distances (dij). Here, 
the patristic distance between species i and j is the 
sum of the lengths of all branches connecting species 
i and j in a tree. The percentage standard deviation 
is defined by 

In ]" 2 {(dij - pij)/dij} 2 x 100 (14) s w =  (n- 1)~<j 

where n is the number of species used and the Pij 
are estimated by Fitch and Margoliash's (1967) 
"three groups" method. As is shown in the Appen- 
dix, the condition for obtaining the correct tree by 
this method is given by the inequalities 

(dAc --  dAD -- dBC + dBD) 2 

< (dAB -- dAD --  dBC + dCD) 2 

(15) 

(dAc --  dAD --  dBC + dBD) 2 

< (dAc -- dAB -- dCD + dBD) 2 

Tateno et al. (1982) used the following quantity 
to measure the deviation of patristic distances from 
observed distances: 

2 (dij - pij) 2 (16) So = n(n--- 1) i<j 

This measure gives a condition identical to (15) for 
the case of four species. 

Maximum Parsimony Method. In this method, 
the number of nucleotide substitutions required to 
explain the evolutionary changes of the species con- 
sidered is computed for all possible (or reasonable) 
topologies, and the topology with the smallest num- 
ber ofnucleotide substitutions is chosen. Only those 
nucleotide sites at which two different nucleotides 
exist in at least two different species are informative 
for this purpose. There are only three nucleotide 
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configurations (the first three configurations in Table 
2) that are informative for the case of four species. 
Configuration 1 requires one nucleotide substitution 
if the topology in Fig. 4A is correct, whereas con- 
figurations 2 and 3 require two nucleotide substi- 
tutions. The latter two configurations favor different 
topologies where only one substitution is required. 

1.0- 

0.8- 

PcO.6 - 

0.4-  

0.2-  i i 
1oo0 2000 3000 4000 

Number of nucleotldes 

(A) 

1.0 

o..I T M ~ T D  . . . . . . . . . . . . . . .  
�9 f-LJ  

~eO.6 - 

0.4 ~ FM 
0.2 , 

]000 2000 3000 4000 

Number of nucleotldes 

(B) 

Fig. 6A, B. Probabilities (Pc) of obtaining the correct topology 
shown in Fig. 4A (four-species case): A one-parameter model; B 
two-parameter model. R = 0.1. UP, UPGMA; TD, transformed 
distance method; FM, Fitch and Margoliash's method; MP, max- 
imum parsimony method 

Therefore, to obtain the correct topology given in 
Fig. 4A, we must have 

m] > m 2 and ml > m3 (17) 

where m~ is the observed number of the i-th config- 
uration in Table 2. 

Compatibility Method. Certain nucleotide config- 
urations can be fitted to a given topology with the 
minimum number of substitutions (the number of 
variable nucleotides minus 1), whereas the other 
configurations require more than the minimum. The 
nucleotide sites with the first group of  configurationS 
are called compatible sites, whereas those with the 
second group are called incompatible sites. In the 
compatibility method, the topology with the largest 
number of compatible nucleotide sites is chosen as 
the final tree. Therefore, the condition for obtaining 
the correct topology with the compatibility method 
is identical with that for the maximum parsimonY 
method in the case of  four species, because when a 
site is incompatible only one additional substitution 
is necessary to make it compatible. This is true even 
for the case of five species. When n >- 6, however, 
the conditions for the two methods are not identical. 

Comparison of Different Methods. The relation" 
ships between the probability of  obtaining the cot- 
rect tree and the number of nucleotides examined 
for the UPGMA, transformed distance, Fitch-Mar" 
goliash, and maximum parsimony methods are giv- 
en in Figs. 6 and 7. The relationships for the dis" 
tance-Wagner and compatibi l i ty  methods  are 
identical with those of the transformed distance and 
maximum parsimony methods, respectively. The 
true phylogenetic trees for the cases of Figs. 6 and 
7 are given by trees A and B in Fig. 4, respectively, 
excluding species E. The main difference between 

,o 
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Pc / / / / /  Pc 
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Fig. 7A, B. Probabilities Pc of  obtain" 
ing the correct topology shown in Fig. 
4B (four-species case): A one-parameter 
model; B two-parameter model. R 
13.17. Abbreviations as in Fig. 6 
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trees A and B is that the length between the branch- 
ing points X and Y is longer in the latter than in 
the former. 

Figure 6A shows the relationships for the one- 
Parameter model of  nucleotide substitution. The 
CUrve for UPGMA is identical with the one for R = 
0.1 irt Fig. 3. It is clear that the transformed distance 
method has a much higher probability (Pc) of ob- 
taining the correct tree than does UPGMA. The 
maximum parsimony method also shows a higher 
Value of Pc than does UPGMA except when m < 
200. The P~ value for the maximum parsimony 
naethod is slightly lower than that for the trans- 
formed distance method when m < 2000. Note also 
that the maximum parsimony method shows the 
POorest performance when m <-- 100. This is prob- 
ably due to the very small number of informative 
sites available for this case. The Fitch-Margoliash 
method shows the smallest value of  Po for m > 100. 
]'he inefficiency of this method is probably due to 
the low power of  SVM or so in discriminating the 
Correct tree from erroneous ones (Tateno et al. 1982). 

The number ofnucleotides required for obtaining 
the correct topology with a probability of  95% is 
given in Table 3 for the six tree-making methods 
COnsidered. This number is 2100 for the trans- 
formed distance, distance-Wagner, maximum par- 
Simony, and compatibility methods. UPGMA and 
the Fitch-Margoliash method require twice as many 
nUcleotides. 

The Pc values for the two-parameter model of 
nUeleotide substitution are given in Fig. 6B. For all 
the tree-making methods, they are lower than those 
for the one-parameter model. This reduction in P~ 
is very small for UPGMA but is substantial for the 
Other methods. It is caused by the higher frequency 
of backward and parallel mutations for the two- 
Parameter model than for the one-parameter model. 
The number of  nucleotides required (m*) is also 
greater for the two-parameter model (Table 3). 

The probability of  obtaining the correct topology 
for model tree B in Fig. 4 is substantially higher than 
that for tree A, as expected (Fig. 7). However, the 
relative probabilities for the six tree-making meth- 
Ods are nearly the same. The effect of the high fre- 
quency of  transitional substitution is also similar for 
the two model trees. The numbers of  nucleotides 
required are substantially smaller if tree B is the 
COrrect one (Table 3). That is, the branch length 
between X and Y has a strong influence on the num- 
ber of nucleotides required. 

Case 3. Five Species 

Let us now consider the case where two outgroup 
Sl3ecies (D and E) are available (Fig. 4). As men- 
tiorled earlier, the Pc value for UPGMA is not af- 

Table 3. The number  (m*) ofnucleotides required for obtaining 
the correct tree with a probability of  0.95 

Four species Five species 

One- Two- One- Two- 
param- param- param- param- 

Tree-making eter eter eter eter 
method model model model model 

Tree A ofFig.  4 

TD = DW 2100 3100 1700 2600 
MP = CP 2100 3300 1700 2700 
UP" 4200 4700 4200 4700 
FM 5000 8200 3000 4900 

Tree B ofFig.  4 

T D = D W  760 1200 640 890 
MP = CP 790 1300 680 980 
UP a 1400 1500 1400 1500 
FM 1700 2800 990 1700 

CP, compatibility method; DW, distance-Wagner method; other 
abbreviations as in Fig. 6 

These numbers  are the same as lhose for three species 

E 

I 
B E B 

D 
(h) (B) 

Fig, $A, B. Two possible topologies for five species 

fected by the availability of outgroup species. In 
other methods, however, the availability of two out- 
group species increases the Pc value compared with 
the case of one outgroup species. 

Transformed Distance Method. When species D 
and E in Fig. 4 are known to be outgroup species, 
there are two ways of  constructing a tree. One is to 
construct an unrooted tree using D or E as an out- 
group species. In this case, the correct tree is ob- 
tained only when D and E make a cluster and this 
cluster is connected somewhere between species C 
and node X in Fig. 8A. The other method is to 
combine D and E as a single (composite) outgroup 
species and to construct a topology as in the case of 
four species. In this case, topologies in which species 
D and E are not clustered, as in Fig. 8B, do not 
occur. Thus, the second method is expected to be 
superior to the first in obtaining the correct tree. We 
shall therefore consider only the second method. 

In the second method, the transformed distance 
between species i and j (i, j = A, B, C) is computed 
by 

d'ij = [dij - (d~D + dj~)/2 - (did + djz)/2]/2 + c 
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Fig. 9A, B. Probabilities (Pc) of ob- 
taining the correct topology shown in 
Fig, 4A (five-species case): A one-pa- 
rameter model; B two-parameter mod- 
el. R = 0.1. Abbreviations as in Fig. 6 

Therefore, the condition d'AB < d 'Ac and d'AB < d'Bc 
can be written as 

dAB + (dco + dcE)/2 < dgc +(dnD + daE)/2 

(18) 

dan -F (dcD + dEE)/2 < dnc + (dAD q- dAE)/2 

These two inequalities are the condition for obtain- 
ing the correct tree. 

Distance-Wagner Method. As with the trans- 
formed distance method, there are two different ways 
of constructing a topology. The first method is again 
inferior to the second method in obtaining the cor- 
rect tree, though the details are somewhat different 
from those for the transformed distance method. 
The condition for obtaining the correct tree by the 
second method is identical with that for the trans- 
formed distance method. This is obvious because 
in the second method species D and E are combined 
and regarded as a single composite species. Here we 
consider only the second method. 

Fitch and Margoliash's Method. There are again 
two ways of  constructing a tree: One is to consider 
the five species separately, and the other is to com- 
bine species D and E. Unlike with the transformed 
distance and distance-Wagner methods, however, 
the first procedure is not inferior to the second. The 
second procedure becomes identical with that for 
four species if we replace dAD, dBD, and dc• by (dAD 
d- dAE)/2 , (daD -}- daE)/2, and (dco+  dcE)/2, respec- 
tively. Our computations have shown that the use 
of two outgroup species as a composite species in- 
creases the probability of  obtaining the correct tree 

only slightly compared with the case of one outgrouP 
species. We shall therefore disregard this case in the 
following. 

The condition for obtaining the correct topologY 
by the first tree-making procedure is somewhat corn- 
plicated, but it is possible to evaluate the PC value 
by the method given in the Appendix. 

Maximum Parsimony and Compatibility Meth- 
ods. There are 51 possible configurations for five 
species, and 25 of them are informative for purposes 
of phylogenetic inference. The frequencies of  these 
configurations can be determined by using Eq. (5) 
and pseudorandom numbers for each value of ha. 
Once the frequencies are determined, one can decide 
whether or not the topology of a tree obtained by 
the maximum parsimony method is correct. Here 
again, we have two ways of constructing a topologY. 
The first one is to consider only three topologies 
where two outgroup species (D and E) are clustered. 
Since these two species are known to be outgrouP 
species, this method is justified. The second method 
is the usual maximum parsimony procedure, where 
all 15 topologies are compared. Though the differ- 
ences between the two methods are quite small when 
m is large, the first method gives better results when 
m is small. Therefore, we consider only the first 
method. As mentioned earlier, the compatibility 
method always gives the same tree as the maximum 
parsimony method in the case of  five species. 

Comparison of Different Methods. Figure 9 shoWS 
the relationships between the probability of  obtain" 
ing the correct topology and the number of nucleo" 
tides examined for the six tree-making methods for 
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the case of tree A in Fig. 4. The results for the one- 
Parameter model ofnucleotide substitution are giv- 
en in Fig. 9A, and those for the two-parameter mod- 
el are in Fig. 9B. The relationship for UPGMA is 
identical with that for the case of three or four species. 
Comparison of Figs. 6A and 9A indicates that all 
other methods show better performance in obtain- 
ing the true tree with two outgroup species than with 
one outgroup species available. In particular, the Pc 
Value for the Fitch-Margoliash method has in- 
creased substantially and now exceeds the value for 
UPGMA. When m = 50, the Fitch-Margoliash 
method shows the highest Pc value among all the 
methods examined. However, as m increases, the 
P~ values for all other methods except UPGMA rap- 
idly increase, exceeding the value for the Fitch-Mar- 
goliash method. In general, the transformed dis- 
tance and distance-Wagner methods again show the 
best performance. When m > 1000, however, the 
maximum parsimony and compatibility methods 
are slightly better. 

When the rate of transitional nucleotide substi- 
tution is much higher than the rate oftransversional 
SUbstitution (the two-parameter model), the effi- 
ciency of  the Fitch-Margoliash method declines 
Considerably and becomes nearly equal to that of 
UPGMA. The Pc values for all other methods except 
UPGMA are also considerably lower than for the 
one-parameter model. It is also interesting that the 
maximum parsimony and compatibility methods 
are now inferior to the transformed distance and 
distance-Wagner methods for all m values exam- 
ined. 

The numbers of nucleotides required for obtain- 
ing the correct topology with a probability of  95% 
are given in Table 3. They are considerably smaller 
than those for four species, but at least 1700 nu- 
cleotides are still necessary whichever model ofnu-  
cleotide substitution or tree-making method is used. 
In the case of mitochondrial DNA, where the two- 
Parameter model is more appropriate, about 3000 
nUcleotides seem to be necessary. Table 3 also in- 
cludes the numbers of nucleotides required for tree 
B in Fig. 4. As expected, they are considerably small- 
er than those for tree A. Even with tree B, however, 
about 900 nucleotides are required for mitochon- 
drial DNA when the transformed distance or dis- 
tance-Wagner method is used. 

Discussion 

In the present study, we have used two simple models 
of nucleotide substitution: the one-parameter and 
tWo-parameter models. Neither model appears to 
be very realistic when long-term evolution is con- 
sidered (Gojobori et al. 1982; Aquadro et al. 1984; 

Li et al. 1984). However, when the number o fnu-  
cleotide substitutions is relatively small, as between 
humans and apes, the effect of  the deviation from 
the two models is probably small. A much more 
serious effect may be generated by the well-known 
unequal rates of  substitution at different nucleotide 
sites. If there are sites where the substitution rate is 
unusually high, the reliability of  a reconstructed tree 
declines because there could be many backward and 
parallel substitutions. Variation in the rate of  sub- 
stitution among evolutionary lineages would also 
reduce the reliability of  a reconstructed tree. There- 
fore, the numbers of nucleotides required for ob- 
taining a correct tree presented in this paper should 
be regarded as minima. 

We have shown that a large number ofnucleotides 
is required for resolving the branching order among 
three closely related species in the absence of out- 
group species and that all methods considered are 
equally efficient in obtaining the correct topology 
under the conditions we considered. In the presence 
of  outgroup species, however, the transformed dis- 
tance, distance-Wagner, maximum parsimony, and 
compatibility methods are more efficient in recover- 
ing the correct tree than UPGMA and the Fitch- 
Margoliash method. We have also shown that the 
availability of two outgroup species improves the 
accuracy of tree reconstruction except with UPGMA. 
The Fitch-Margoliash method shows the poorest 
performance when only one outgroup species is used 
but becomes better than UPGMA when two out- 
group species are used. 

It should be noted that this conclusion depends 
on the extent of DNA divergence among the species 
studied as well as on the shape of the tree. In this 
paper, we have considered a case similar to the di- 
vergence of  the mitochondrial DNAs (mtDNAs) 
from humans, chimpanzees, gorillas, orangutans, and 
gibbons. Therefore, our conclusion may not apply 
to cases where the extent of  DNA divergence and 
the tree shape are quite different. However, the 
mathematical theory developed here can be used for 
any case. Note also that our primary objective in 
this paper was to resolve the branching order among 
three closely related species. For this purpose, we 
considered the case where one or two outgroup 
species are available. Our problem is therefore dif- 
ferent from the construction of a tree for four or five 
species without outgroup species. Furthermore, the 
relative merits of  different tree-making methods de- 
pend on the number of  species as well as on the tree 
shape. Therefore, the conclusions obtained from this 
study should not be extrapolated to other cases with- 
out caution. For example, the Fitch-Margoliash 
method showed a rather poor performance for our 
case, but its relative merit may increase as the num- 
ber of species used increases. 
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Brown et al. (1982) conducted a pa r s imony  anal- 
ysis for their  m t D N A  data  (896 bp) for h u m a n s  and  
apes and  showed that  the mos t  pa rs imonious  tree 
is C G - H - O B  (topology 2), where C, G,  H, O, and 
B stand for  chimpanzees ,  gorillas, humans ,  orang- 
utans, and  gibbons. Nei  et al. (198 5) analyzed Brown 
et al. 's  data  using U P G M A  and obta ined  a different 
tree ( H C - G - O B ;  topology 1). Recently,  Hixson  and  
Brown (1986) sequenced about  950 bp  o f  the small  
r R N A  gene region o f  m t D N A  for p y g m y  ch impan-  
zees, c o m m o n  chimpanzees ,  gorillas, and  orang- 
utans. I t  would be interesting to combine  these two 
data sets and  reconstruct  the tree for humans ,  ch im-  
panzees,  gorillas, and  orangutans  using the six tree- 
making  methods  considered here. For  this purpose,  
we can use a combined  sequence o f  1834 bp, ex- 
cluding insertions and deletions. 

Table  4 shows the num ber s  of  nucleotide differ- 
ences and the es t imates  o f  nucleot ide subst i tut ions 
per site (evolut ionary distances) ob ta ined  by Jukes  
and  Cantor ' s  (1969) formula  (see also K i m u r a  and  
Ohta  1972). With  this set o f  distances, all four dis- 
tance mat r ix  me thods  ( U P G M A ,  t rans formed  dis- 
tance, dis tance-Wagner ,  and  Fi tch-Margol iash)  give 
the same topology: H C - G O .  The  m a x i m u m  parsi- 
m o n y  and compat ib i l i ty  me thods  also suppor t  this 
topology (see Table  5). The  U P G M A  tree with the 

Table 4. Numbers of nucleotide differences (below diagonal) 
and evolutionary distances (above diagonal) for two regions of 
mtDNA from humans, chimpanzees, gorillas, and orangutans" 

Human Chimp. Gorilla Orang. 

Human -- 0.063 0.072 0.134 
+0.006 +0.007 -+0.009 

Chimp. 114 -- 0.077 0.141 
(35) +0.007 +-0.009 

Gorilla 126 134 -- 0.140 
(34) (39) +-0.009 

Orang. 225 237 234 -- 
(82) (84) (85) 

a 1834 nucleotides from Brown et al. (1982) and Hixson and 
Brown (1986) were used. The numbers ofnucleotide differences 
in parentheses are those for the small rRNA gene region (a 
sequence of 939 bp) of Hixson and Brown (1986). The human 
sequence for this region is from Anderson el aL (1981) 

s tandard  errors o f  the branching points  ob ta ined  by 
Nei  et al. 's  (1985) m e t h o d  is given in Fig. 10. 

The  results o f  our  p a r s i m o n y  analysis are different 
f rom those of  Brown et al. (1982). We used about  
twice as m a n y  nucleotides as they did. So one might 
think that  our  conclusion is more  reliable than BroWn 
et al. 's. Unfor tunate ly ,  the rate o f  nucleotide sub- 
st i tution in the small  r R N A  region is considerably 
lower than  in the o ther  region, and  this results in a 
smaller  n u m b e r  o f  in fo rmat ive  sites in this region 
than in the other  region. Theoretical ly,  i f  one uses 
two outgroup species, the accuracy o f  the tree ob- 
tained improves  c o m p a r e d  with the case o f  one out- 
group species, as shown in this paper.  In  the case of 
Brown et al. 's  (1982) data  (region 1 only), however,  
the difference in the m i n i m u m  n u m b e r  of  nucleotide 
substi tut ions required between topologies 1 and 2 
is - 2  in Brown et al. 's analysis (two outgroup species) 
and  4 in our  analysis (one outgroup species). ThiS 
is inconsistent  with the theoretical  expectat ion,  but 
p robab ly  due to chance effects. 

While the pa r s imony  analysis does not  give a con- 
sistent result, all four  distance mat r ix  me thods  give 
the same topology (topology 1) for bo th  Brown et 
al. 's  data  (Nei et al. 1985; Nei, in press) and  the 
combined  data. This  strengthens suppor t  for topol- 
ogy 1, but  the branch  length between X and Y in 
the U P G M A  tree in Fig. 10 is still not  statistically 
significant even with the combined  data. I t  seems 
that, as predicted f rom the present study, m a n y  more  
nucleotides have  to be examined  i f  we are to settle 
this p roblem.  K o o p  et al. (1986) c o m p a r e d  about  
2100 nucleotides (excluding insert ions and dele- 
tions) o f  ~-globin genes o f  humans ,  chimpanzees ,  
gorillas, and orangutans.  The  nucleotide divergence 
(2kT) among  humans ,  ch impanzees ,  and  gorillas is 
approx imate ly  0.017, which is only one-sixth the 
value for Brown et al. 's  (1982) m t D N A  data. Be- 
cause o f  this low rate of  nucleotide substi tution, 
~7-globin gene data  are less in format ive  for resolving 
the human--chimpanzee--gori l la  divergence. 

In the present  paper,  we have  considered the effect 
o f  stochastic errors o f  nucleotide subst i tut ion on a 
reconstructed tree, ignoring the effect o f  genetic 
p o l y m o r p h i s m  that  might  have  existed at the t ime 

Table 5. Numbers of nucleotide changes required to explain three topologies for humans (H), chimpanzees (C), gorillas (G), and 
orangutans (O) a 

Region 1 Region 2 Regions 1 & 2 

Topology TI TV Total TI TV Total TI TV Total 

HC--GO 58 3 61 25 2 27 83 5 88 
CG-HO 59 6 65 26 2 28 85 8 93 
HG--CO 63 6 69 26 1 27 89 7 96 

Region 1, data of  Brown et al. (1982); region 2, data of  Hixson and Brown (1986). TI, transitional substitutions; TV, transversional 
substitutions. Only phylogenetically informative configurations of nucleotides are considered 
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of speciation. In the presence o f  po l ym orph i s m ,  a 
tree reconstructed f rom a single gene f rom each 
species m a y  be different f rom the species tree, even 
if a large n u m b e r  o f  nucleotides are used (Tateno et 
al. 1982; Takaha t a  and  Nei  1985). In the case o f  
three species, the probabi l i ty  o f  obtaining erroneous  
topologies is high when  the difference between the 
times o f  the first and  second speciat ions is small  
(Fig. 1). Considering neutral  muta t ions ,  Nei  (1986) 
has shown that  the n u m b e r  o f  generat ions (h) re- 
quired for obtaining the species tree with a proba-  
bility o f  1 - E is given by  t~ = - 2 N  log~(3E/2), 
since E = 2/3 e x p ( - h / 2 N ) .  N is the long- term effec- 
tive popula t ion  size. Therefore ,  i f  we want  to make  
E as small  as 0.05, t~ mus t  be 5.2 N generations.  In  
hominoids ,  N could be abou t  104 (Nei and  Grau r  
1984). I f  this is the case, tt = 5.2 • 104 generat ions 
for E = 0.05, or  abou t  800,000 years i f  one gener- 
ation consists o f  15 years. Therefore,  unless the in- 
terval between the first and  second speciat ion events  
is longer than  one mil l ion years, examina t ion  of  a 
single gene f rom each species is unlikely to give a 
clear-cut resolut ion o f  the branching order  a m o n g  
humans,  chimpanzees ,  and  gorillas. 

Recently, U e d a  et al. (198 5) repor ted  the existence 
of a t runcated pseudogene for immunog lobu l in  C, 
in humans  and  gorillas but  not  in chimpanzees ,  the 
Other apes, and the Old World  monkeys .  This  find- 
ing is consistent  with the topology HG--CO. H o w -  
ever, Hixson  and  Brown (1986) d iscovered  a one- 
base delet ion shared by  ch impanzees  and  gorillas, 
Which is consistent  with the topology C G - H O .  Ob-  
Viously, these two topologies are contradictory;  the 
results appea r  to be due to p o l y m o r p h i s m  at the 
t ime o f  divergence a m o n g  humans ,  chimpanzees ,  
and gorillas. 

To  avo id  this type o f  p rob lem,  we mus t  s tudy 
many  independent  genes (loci). The  n u m b e r  o f  genes 
required for obtaining the correct  species tree with 
a probabi l i ty  o f  95% m a y  be ob ta ined  in the follow- 
1rig way: In the case o f  three species, there are three 
Possible topologies,  and  only one o f  t hem is the 
Correct one. U n d e r  the assumpt ion  o f  no selection 
and constant  popula t ion  size, the probabi l i ty  that  a 
gene tree has the same topology as the species tree 
(topology 1) is G~ = 1 - 2/3 exp( - - t l /2N)  (see Nei  
1986). The  probabil i t ies  o f  obtaining the other  two 
tOpologies (topologies 2 and  3) are G2 = G3 = V3 
e •  (see Nei  1986). Therefore,  i f  we s tudy 
k independent  genes, the probabi l i ty  that  p genes 
show topology 1, q genes show topology 2, and  r 
genes show topology 3 is 

k! 
Q(p, q, r) = ~ GfG2qG3 r (19) 

p! q! r! 

SUppose that the topology supported by the largest 
number of genes is regarded as the correct one. Un- 

' I , 

Human 

Chimpanzee 

Gorilla 

Orangutan 

i i i i 

0.6 0.4 0.2 0.0 

d 
Fig. 10. Phylogenetic tree of mitochondrial DNAs from hu- 
mans, chimpanzees, gorillas, and orangutans. This topology is 
supported by all the tree-making methods considered here. The 
branch lengths were estimated by UPGMA. The standard error 
of each branching point was obtained by Nei et al.'s (1985) 
method 

Table 6. Probabilities of obtaining the correct species tree from 
data for k genes 

k 

h/2N 1 2 3 4 5 6 7 

4 0.988 0.976 1.000 1.000 1.000 1.000 1.000 
2 0.910 0.828 0.977 0.967 0.994 0.996 0.999 
1.5 0.851 0.725 0.940 0.916 0.974 0.984 0.992 
1 0.755 0.570 0.849 0.798 0.901 0.933 0.954 
0.5 0.596 0.355 0.642 0.555 0.675 0.745 0.776 

der this procedure,  we obtain  the correct  topology 
only when p is greater than  bo th  q and  r. I t  is there-  
fore possible to compu te  the probabi l i ty  (Qc) o f  ob-  
taining the correct  topology by s u m m i n g  all Q(p, q, 
r) satisfying p > q and  p > r for a given value o f  k. 
The  Qc for var ious  values o f h / 2 N  and k are given 
in Table  6. When  h / 2 N  is equal  to or  larger than  2, 
Qr is quite high even  for a small  n u m b e r  o f  genes 
used. When  t t / 2N is smaller  than 0.5, however ,  a 
large n u m b e r  o f  genes is necessary to obta in  the 
species tree with a high probabil i ty.  In Table  6, Q~ 
for k = 2 is smaller  than  tha t  for k = 1. Th is  is 
because when k = 2 there are cases with p = q = 1 
or  p = r = 1 and  these cases are not  included. The  
lower values o f  Qr for k = 4 than  for k = 3 occur  
for the same reason. 

Equat ion (19) allows us to compu te  the n u m b e r  
o f  genes or loci (k*) required for obta ining the cor- 
rect species tree with a probabi l i ty  of  95% when tl 
and  N are given. I t  is 3 for h / 2 N  = 2, 5 for t l / 2N  = 
1.5, 7 for t l / 2N = 1, and  14 for h / 2 N  = 0.5. 
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Appendix: Condition for Obtaining the Correct Tree with Fitch and Margoliash's (1967) Method 

Four Species. To compute SVM in Eq. (14) for a given tree, we must  have estimates o f  the branch lengths of  the tree (a, b, c. d, and e 
in Fig. A1A). In the Fitch-Margoliash (FM) method, these lengths are estimated in the following way: We can start either from the 

A D 

B C 

(A) 

A E 

B C D 

( B )  

Fig. AIA,  B. Trees for four species (A) and five species (B). a, 
b . . . .  , g are branch lengths 

species pair A and B or from the pair C and D; the resulting estimates are the same. Therefore, let us start f rom A and B. First  the 
distance between species A and another  "species" X (C and D) is computed by dAx = (dAc + dAD)/2. Similarly, the distance between 
B and X is dax = (dac + teD)/2. Branch lengths a and b are then estimated by 

a = (dA, + d^x - dax)/2 (AI) 

b = (dAB + dBx -- dAx)/2 (A2) 

Species A and B are now combined and regarded as a single composite species. The distances between this composite species and the 
other species are computed by d(Aa~c = (d^c + dBc)/2 and d(^B)D = (dAD + daD)/2. One can then estimate branch lengths c, d, and 
e by 

c = [dcD + d(AB)C -- dCAB)D]/2 (A3) 

d = [dcD + d(̂ B~D -- d~AB)C]/2 (A4) 

e = [d(^,~c + d(a,~D -- dcD]/2 -- dAe/2 (A5) 

I f  we use matrix algebra, the above branch-length estimates can be written as 

A = �88 (A6) 

where A and D are the column vectors of  a, b, c, d, e, and dan, d^o dAD, dBC, daD, dCD, respectively, and M is the matrix 

i 11_1_1 2 - 1  - 1  1 1 

M = 0 1 - 1  1 - 1  

- 1  1 - 1  1 

- 1 1 1 1 - 

(A7) 

Once the branch lengths are obtained, the patristic distances Plj are given by P^B = a + b, PAC = a + c + e, PAP = a + d + e, PBc "~ 
b + c + e, PaD = b + d + e, and Pep = c + d. Therefore, one can compute the percentage standard deviation s~-M in Eq. (14). In the 

present case, (dAB -- PAB): = (dcD -- PcQ 2 = 0 and (d~ - p~j)2 = (dAc - dAD -- dBc + dnD)V1 6 for the other pairs o f  species 0 and j). 
Thus  we have 

s m  = [(dAc - dAD -- dac + dao) 2 x C]';' x 100 (AS) 

where 
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1 
C 8n(n - -  1 )  [ d A c - 2  + dAD-2 + dBc-2 + dB~ 

and n is the number  o f  species involved.  It can be shown that the SFM for the other  two toplogies a r e  [(dAB --  dAD -- dac + dcD) 2 x 
C]v, x 100 and [(dAc - dau - dcD + dBD) z X C] '~ x 100. Therefore the condi t ion for obtaining the correct  topology is given by (15). 

Five Species. Let us consider  the tree given in Fig. A1B. As in the case o f  four species, we can start f rom the pair  A and B or  the 
Pair D and E, and the result will be the same. Let us start f rom the pair A and B. The branch lengths a and b are then  est imated by 
Eqs. (A1) and (A2), respectively, i f  we redefine d^x and dax as 

Furthermore, c and f can be est imated by 

Where 

dAx = (dAc + dAD + dAE)/3 

dux = (dBc + dBD + dBE)/3 

c = [d~Aa)C + dcx - d~AmX]/2 

f = [d~AB~C + dtAB)X - -  dcx]/2 - d A B / 2  

We also have 

Where 

d<AB~c = (d^c + due)/2 

dcx = (dcD + dc~)/2 

d(AB)X = (dAD + daD + dAE + daE)/4 

d = [dDE+ dtAuC)D - -  dtABC)E]/2 

e =[dDE + dtABC)E -- d(ABC)D]/2 

g = [d<AaC~D + d(^uC)E -- dDj/2 -- (a + b + c + 20/3 

d(A~IC)D = (dAD + dBD + dcD)/3 

CI(AuC}E = (dAE + dBE + deE)/3 

If  We use matrix algebra, the above equations for branch-length est imates can be writ ten as 

A = (1/24)MD (.4.9) 

Where A and D are the column vectors o f  a, b c, d, e, f, g, and dAu, d ^ o  dAD, dAE, dBc, dUD, duE, dco, deE, dDE, respectively, and M is 

12 4 4 4 - 4  - 4  - 4  0 0 ( ]  
12 - 4  - 4  - 4  4 4 4 0 0 0 

o 0 6 - 3  - 3  6 - 3  - 3  6 6 
M = 0 0 4 - 4  0 4 - 4  4 - 4  12 

0 0 - 4  4 0 - 4  4 - 4  4 1 
- 1 2  6 3 3 6 3 3 - 6  - 6  

0 - 6  3 3 - 6  3 3 6 6 -12..I 

as  The differences between the patristic and observed distances can now be writ ten 

"dAc -- PAC= 

dAD - -  PAD 

dAE - -  PAE 

duc - Pac 

dud PBD 

dBE - -  PUE 
daD -- PCD 

.dee - PCE- 

1 

= T ~  x 

- - 4  2 2 4 - 2  - 2  0 0" 
2 - 5  3 - 2  3 - 1  2 - 2  
2 3 - 5  - 2  - 1  3 - 2  2 
4 - 2  - 2  - 4  2 2 0 0 

- 2  3 - 1  2 - 5  3 2 - 2  
- 2  - 1  3 2 3 - 5  - 2  2 

0 2 - 2  0 2 - 2  - 4  4 
0 - 2  2 0 - 2  2 4 - 4  

d^c I 
dAD I 
dAE [ 

X dBc I 
dBo I (A10) 

due I 

.d~E.I 

and dAa ___ PAB and dDE= POE. Therefore, we cart compute  sr~ using Eq. (14). 
Since we know that species D and E are outgroup species, we consider  only the tree where D and  E are clustered. However ,  this 

cluster may be connected to any o f  the branches A-W,  B--W, and C - W  of  Fig. 5. Only when the (D, E) cluster is connected to the C -  
~V branch do we obtain the correct topology. In our  computa t ion  o f  the probabili ty of  obtaining the correct topology, we chose the 
tree that gave the smallest value o f  SFM for each set o f  distance values (each replication) and examined whether  or not  the tree 
Constructed was correct. The relative frequency o f  obtaining the correct tree is taken as the probabil i ty Pc. 
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