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ABsfmot
With rapid increase of DNA sequence data, it is required to deyelop reliable application programs

to infer. molecular. phylogenetxc trees in parallel, environment.. To jmplement :a practical max-
imum likelihood method in para.llel envu'onment we have developed programs, Conlour/I and

'likelihood surfaces and we can mvest:gate the snrface to reach the maximum likelihood pomf
while Traverse/3 searches the maximum likelihood values by traversing branches. We propose
ideas how to implement the maximum likelihood method in a parallel environment.

1 Introduction

Reconstruction of molecular phylogenetic trees is quite important for molecular evolutionary studies.
The molecular. phylogenetic tree is-one of the. evolutiona.ry models, which presents us how organisms
evolved.at the molecular level,[8, 11],. R o 0o

The maximum likeljhood. method [3] is known to be relatwely robust among many methods for
reconstruction of molecular phylogenetlc trees [6,.12).: In this method, the concept-likelihood is defined
as the measure for closeness between given data and a hypothesis. We explore the hypothes:s space,
and select one hypothesis which gives the maximum likelihood.

Unfortunately, however, this method requires extremely high computational cost [4] One of practi-
cal resolutions for this problem is parallel execution. Program fastDNAml [9] is a maximum likelihood
method implemented into parallel environment, however, it is. ;expected. that ~parallel logic program-
ming provides us more appropnate concept for pa.rallel executlon for this. problem. That i is, the codes
written with parallel logic programming is not only eﬁicxent in execution but also comprehensxve for
human.

ICOT (Instltute for New Generation Computer Technology) developed an excellent para.llel logic
programming language, KL1. Uslng this language, we can easﬂy write efficient codes for parallelism.
KLIC also made it possible to implement programs written in KL1'to many different environments,
from massively parallel computer to PC. It is expected that the maximum likelihood method in
KLIC/KLI leads us new discoveries through efficient and accurate data a.na.lysm

2 Molecular Phylogeny

The molecular phylogenetic tree is the diagram which presents the evolutnona,ry relationship of genes
or organisms visually. There are-two kinds of phylogenetic trees; species trees and gene trees (8). In
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this paper, we deal with the latter only.

There are three layers in a gene tree, the realized tree, expected tree, and estimated tree (Figure
1). We never know the expected tree precisely because everything we can infer is only mutations
occurred on the branches.

Figure 1: The realized tree and expected tree (modified from [11]).

The trees can be divided to rooted trees (see Figure 1) and unrooted trees (see'Figure 5), but
latter ones are usually produced in moleciilar phylogeny. If we specify the root, 'an unrooted tree will
be transformed into a‘'rooted tree. = o et e

The hypothesis space we have to explore is very huge. Even if wé considered only the topology

vvvv

space, the number of its elements would igt':ggaée im@édiaté]}. ‘The number of t9p91051es of unrooted
bifurcating trees for 7 nucleotide sequences is give as [] R

21 —'5)!
gl o)

3 The Maximum Likelihood Method

The maximum likelihood methed to infer a phylogenetic tree is based on-the stochastic concepts.
We assume trees which have certain branch lengths and topologies, and ¢alculate the values of ‘the
likelihood-on each tree, using the branch length, topology, and actual sequence data. '

‘For instance, the likelihood (1) of the rooted tree below (Figure 2) for a particular nucleotide site
in the sequence of K sitesis ‘ i ' S won S o

l = Z Z Pao’ﬂxﬁ(’I’I)Pluz'("ﬂpseaa (v3)Pseac. (”4)Pﬂoﬁu‘k”5??qéas (vﬁ‘)"’r{o" - (2)

3 %

I1x3x5x:--x(2n-5)=

where v; (i = 1---5) is 4 branch length (number of nucleotide substitution), s; is a state of character
site of node ¢ (i = 1.+:6), m,, is a prior probability of a nucleotide in a state 59, and Py, (¥%) is' the
probability of a nucleotide transition from state s; to s; during the evolutionary time between nodes
t and j.

* We can generalize the above equation using the following equation {3)

‘g:) = [Z Psu«("’i)lg?llz Fors; ("i)?&?]: N o o (3)

where 15’:’ is the likelihood of node k with state sg. zﬁ’;’ is the product of likelihoods regarding two
children nodes i and j (see Figure 3).
We assume the following Markov process.

{ Puysy(dt)

sl = Sgruam G20 0

udtn; (E#1),
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‘ Fignre 3: 'Recnrgive deﬁnition: of 'i;ondit.'ion,gl ﬁ,kglfhodd 1(5':),-
T .o i e s T R AR . 7&4}',:‘» u

where u is the substitution rate per unit time and ¢ is the evolutxonary time dunng nodes i a,nd ] I
Conseqiiently, the probability that' nucleotlde 8 cha.nges ‘to &5 becomes

P, ('v,-) = e V8,5, + (1 — €7V )m,,. (5)

It should be noted that v; = u;t, which is the number of nucleotide sibstitutions at braneh’# accumu-
lated dunng time ¢.

“We explore all elements of ‘the hypothesls space, a.nd select the tree Wwith the li.i"g‘hest hkehhood
In a.dfhtxon to the qmte huge topology spax:e, we have to search the branch length space in the given
topology. Clearly, the likelihood of the given tree will change if l)ra.nch Iengths are modified. '

To search for the stationary point of the likelihood surface, ‘we calculate the différéntiation of the
‘likelihood with branch length, and find the point which makes the value of differentiation 0. Of course
there is no guarantee that the stationary point gives the largest likelihood value. It is! empirically
known that the stationary point corresponds to the maximum value. But the strict theory of this
calculation is remained to be established.

To derive the point which makes the dxﬂ'erentlatlon 0, an iteration is apphed An appropnate
initial value.is set to the equation, and the derived value is set as a new initial value _recursively.

We can calculate the conditional likelihood for any nodes usmg this rela.txon When we ca.lculate
conditional likelihood on the root, it means that we compute the calculation of the likelihood for the
given tree. Since we usually do not.know the state.(nucleotide) of the root, we,have to sum: up the
conditional likelihood with every possible state. .. :

So far we have discussed about the evaluation of hkelxhood on the conﬁgura.tlon of only one sxte
The actual likelihood is the product of the likelihoods through all sites of the sequences. Then the
whole likelihood (L) can be presented as the following equation.
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L =T1(Arq + Bip), (6)

where Ay =3, 7 : l(")l(j) By,=%,, wdS: )E w,l(’),p =l-e%,andg=1-p=e¥.
We usually take loga.nthm of L because calculation is simpler. Since logarithmic function is
- monotonic, we can evaluate the logarithm of L instead of L.

InL =) In(Asq + Bip). (7)
k ) .

We derive p instead of v;, because we can obtain v; from p easily.

4 Concurrent Algorithm

There are several ways of pa.ra.llel computations in the maximum likelihood method. We should notice
that our aim is not only to search topology space but also to calculate lnd.lVldlla.l likelihood values of
a given topology as fast as possible.

The most apparent computation which can be carried out in parallel is the topology search. Search
of one topology is independent from that of another topology completely. However, the search space
will increase exponentially if we execute exhaustive search. For instance, 20 sequence data produce
the topology space whose size is 2.2 x 10%°, Thus it is necessary to specify candidates that might give
the maximum likelihood value. We don’t describe how to reduce the search space in this paper.

The evaluation for each site on the sequences can also be executed in parallel when we assume
that mutations occur at each site independently. Furthermore, we. can combine the sites which have

same conﬁguratlons, and compute at once.
' The branch length searches are not mdependent, yet it is possible to execute each set of computa-
tions in parallel during the iteration since we apply itérative evaluation to obtain branch lengths. The
maximum number of branches for n sequences is only 2n — 3, and it is expected that. this parallelism
is efficient in limited parallel environment.
_ Actua.lly, gince the number of avmlable nodes (processors) is stnctly lumted we should a.ssxgn
a.ppropnate pnontxa to_goals according to data analyses we carry out

5 Implementotion . , o

Qur programs have been written in KLIC/ KL1. At present, only Contour/I ha.s been unplemented
to PlM/m aud PIM/ Ps. wlnch are pa.rallel mference :machines developed by ICOT fn thm sectlon we
show how to unplernent the a.lgonthm to celculate condntlona.l hkehhood valuee a.nd a sketch of the

method to a.smgn goals to avmlable nodes

' 5 1 Deﬁnition of a Tree

The way how to express a tree is critical in our case becauseé a molecular phylogenetxc tree rs often
unrooted We cannot specify the root, which is the ongm of the tnme stream. ‘

Definition 1 The structure of Tree is cons [Branch|Branches], where Branch is one of branches
that compoee_ the tree, and Branches :s the rest of branches ‘

Deﬁmtlon 2 The structure of Branch is list (more generally we should call it functor) [Nodey, N odez, Length),
where Node; and Nodez are two nodes of the branch, and Length is the lenigth of branch flanked by
both nadea ,



5.2 Definition of Conditional Likelihood

As mentioned above, the concept of conditional likelihood is applied recursively to calculate likelihood
of the given tree. We can regard conditional likelihood as a probability that 4 node has a certain
state. :

Definition 3 The predicate clike(Sites, Tree, Branch, State, Node, Node_Children, Likelihood) means
that there is a node Node which has state State.on one side of a branch Branch, and the node con-
nects to two nodes Node Children. These nodes and branches are on the.iree Tree. The likelihood

for that node is Likelihood. . . . SR

Therefore, if we specify Sites, Tree, Branch, State, Node, and Node _Children, conditional like-
lihood of a given node is obtained as Likelihood. The clauses which define predicate clike/7 is as

follows.

clike(Sites,Tree,Branch,State,Node,Node_Children,Likelihood)
:- Node_Children \= {] |

Node_Children = [Node_Child_1,Node.Child.2], .. .

. States_1 = [a,t,g,c], P
-get_tinme(Tree,Node,Hode_Child.1,V.1), .
Hext_Branch_1 = [dee,Hode;Child_i].vA ol
connect(Tree,Next_Branch_1,Node_Child_1,Node_Child_Children_ 1),
aumPL(Sites,Tree,Next_Branch_i,States_i,State;Y:I.Node_Child_l, )
©.0.." Neode_Child Children_1,Left), LS B
Stateh,2wéf[§;t,g,9]s(”‘f“§ . - o T
get_time(Tree;Node,Node_Child_2;V_2), e e
Hext_Branch_2 = [Hode,Node_Child_2], T
connect(Tree,Next_Branch_2,Node_Child_2,Node_Child_Children_2),
BumPL(Sites,Tree,Branch,States_2,State,V_2,Hode_Chi1d_2,
Hode_Child_Children_2,Right),

Likelihood $:= Left * Right. . e !

clika(Sites,Tree,Branch,Stato,Node, Node_Children,Likelihood) :=
. Node_Children'= [] CoE el
sit:eA(Sites,Node,State_Hode) b

commit_likelihood(State_lode,$tate, Likeiihood). ' S

'

Definition '4' The predicate get_time(Tree, Node, Node_Child, V) means that the elapsed time, i.e.,
the branch length between two nodés Node and Node Child is V. Of course Node and-Node_Child
are op the tree Tree. . . S S o
5.3 Direction of Evaluation

Although a node connects to three nodes except it is a leaf or a root, we have to suppress one of
the directions of evaluation. A whole likelihood is a product of likelihoods of two subtrees and a
transitional probability from a root of a subtree i to another root of another subtree j . To specify the
tentative root of the subtree, we select a'branch ij. This is the reason why the predicate connect/4
requires Branch as an argument. A leaf can be the tentative root of a subtree, however, in this case,
one of the subtrees is composed of only one node.

5.4 Parallel Execution

In Contour/1, each calculation of likelihood values is independent once branch lengths are given. Sincé
the number of available nodes (processors) is less than points on a grid generally, each calculation
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is distributed among them as equally as possible (Figure 4 (a)). The code to distribute is simple as
follows (codes are simplified).

vary_x(Delta,X,Data,XYZss) :-
X =< upper_limit_of_x
I
vary_y(Delta,X,Y,Data,XYZs),
current_node(Current_Node,Total_Node),
Next_Node := (Current_Node + Increment) mod 64,
vary_x(Delta,Next_X,Data,Rest_XYZss)®node(Next_Node).

vary_y(Delta,X,Y,Data,XYZs) :-
Y =< upper_limit_of_y
|
function(X,Y,Data,Z,XYZ), .
current_node (Current_Node,Total_Node),
Next_Node := (Current_Node + 1) mod 64,
vary_y(Delta,X,Next_Y,Data,rest_XYZs)@node(Next_Noda).

Similarly, each computation for sites on sequences is assigned to nodes (processors) as many as
possible (Figure 4 (b)). It is problem which of the calculations we should givepriority whole likelihoods
or individual sites (configurations). We decide the priority empirically in this program. -

¢

(a) Strategy 1. . (b) Strategy 2

Figure 4: Two types of parallel execution.

6 Experimentation

6.1 Method
To examine the above condition, we have used the artificial data shown in (Table 1). There are
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b W e

AAAAAAAAAAAAAAA CCCCCCCCCCCCCCC

AAAAAAAAAAAAAAA- CCCCCCCCCCCCCCC:

AAAAAAAAAAAARAA CCCCCCCCCCCCCCC
AAAAAAAAAAAAAAA CCCCCCCCCCCCCCC

GGGGGGGGGGGGGGG TTTTTITITTITTIT

GGGGGGGGGGGAGGE TTTTTITITTITITT
GGGGGGGEGAGGGGE TTTTTTTTTTITTIT
GGGGGGGGEGEERGE TITTTTTTITITITT
GGGGGGGGEGGGGEE TITTTTTTTITTIIT

AAAAAAAAAAAAAAA CCCCCCCCCCCCCCQ

AAACCGGTTT AACCGGT ACGTA CGT AC GT A CGTAC GTA C G
AAACCGGTTT AACCGGT ACGTA TAC GT GT A CGTACGTA T G
AAACCGGTTT AACCGGT GTACG CGT GT GT C CGTAC CAG C A
AAACCGGTTT GTTGACC ACGTA CGT GT AC G TACGT CAG T T
GTGTGACACC AACCGGT ACGTA CGT GT CA T TACGT CAG T T

N b W=

Table 1: Artiﬁcial nucleotide sequence dﬁta

60 invariant nucleotide sites in the five sequence data with 100 nucleotides. We have examined five
topologies (see Figure 5). It may be noted that there are 15 possible topologxes for five sequences.
We ha.ve mvestlgated the log hkehhood surfa.ce a.round the mferred maximum hkehhood pomt of the

Figure 5: The exaniine’d ﬁve topologies

gwen trees using Contour/1. DNAML [4] was first used to obtmn the 1mt1a.l values
Tree 1: [[1,6,0.02198), 6,7, 0.02451], [7,8, 0.11129), [3, 6,0.08527], [2, 7, 0.04142], [4, 8, 0.09700), [5, 8, 0.15164]].

Tree 2: [[1,6,0.02746), 6, 7,0.00006], [6, 8, 0.12823}], [2, 7,0.06089], [3, 7, 0.08712), [4, 8, 0.00427]; 5, 8, 0.15429)].
Tree 3: ([1,6,0.02746], 6, 7,0.00006], [6, 8, 0.12823], [2, 7,0.06089), [3,7,0.08712], [4,8, 0.09427], [5, 8,0.15429]].
Tree 4: [[1,6,0.03428), 6, 7,0.03189), [7,8, 0.00003], [2, 6,0.04899), [3, 8,0.07872], [4, 7, 0.17928], [5, 8,0.22394]).
Tree 5: [[1,6,0.05277), 6, 7,0.00006}, [7,8, 0.60003], [2, 8, o.os709], (3, 8,0.08051), [4,7, 0.19338); [5, 6, 0.23391]];

To ptesent the log hkehhood surfaces v1sua.lly, lengths of user-specxﬁed two branches are varied
and the corresponding log likelihood values are plotted. Lengths of other branches are ﬁxed In this
experiment, two internal branches are specified to vary.

In parallel environment (PIM/m), we examined two kinds of pa.ra]lel execution, which are calcu-
lations of total log likelihood values (Strategy 1) and calculations of individual likelihcod values on
each site (Strategy 2). The number of points on the gnd is from 16(4 x 4) to 196(14 X 14), and the
number of nodes (processors) is 64.

On the other hand, program Traverse/$ searches the optimized branch length, and the predicate
branch/3 climbs the seven dimensional log likelihood surface to its peak. The predicate branch/3
shows us the ‘user time of its process using the predicate times/4 in the module unix to reveal-the
performance [1]). In this manner, we evaluate optimized bra.nch lengths of each tree, as well as the
maximum likelihood.

Contour/1 was executed on PIM/m, while Traverse/.? was executed on SUN SPARCstation CL™,
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x\y 0.00 0.01 0.02 0.03 0.04 0.05

0.15 | -351.1923  -350.1430  -350.2229 -350.5290 -350.9350 -351.3973
0.16 | -351.0913  -350. 0823 -350.1648 -350.4710 -350.8765 -351.3378
0.17 | -351.0291 -350,0580 -350.1431 -350.4493 -350. 8541 ~351.3146
0.18 | -351.0013 -350. 0661 -350.1537 -350 4699  -350. 8640 -351 3234

0.19 | -351.0043  -350.1032 -350.1931 -350.4993 -350.9026 -351 3610
0.20 | -351.0350 -350.1662 -350.2584 -350.5645 -350.9671 -351.4244

Table 2: Log likelihood values around the inferred maximum likelihood poxnt ‘of Tree 2 (a boldfaced
figure is the highest value)

6.2 Results

Some log likelihood values using Contour/1 for Tree 2 are shown in Table 2, and its log likelihood
surface is shown in Figure 2. In this example, léngths of two internal branches were varied from 0.00
to 0.30 and from 0.00 to 0.10 with the increment of 0.01. Table 3 shows the highest likelihood values
which are inferred by using Traverse/$ and correspondmg inferred branch lengths for the examined
five. treee

It is. mterestmg that the curvature of the, llkehhood sutface is asymmetnc When branches are
short likelihoods change drastlca.l!y, while the decrease of likelihood is not sensitive to branch length
when branches are longer than the branch which gives the maximum likelihcod value. This means
that the likelihoods of the hypothesis space is not uniform, and improvement of likelihood depends on
direction of search. In this case, we might overestimate lengths of these branches if we preset larger
branch length than that which gives the maximum likelihood value! Actually, however, we happened
to start from a smaller branch length and’ did not encounter such dverestimation problem. It is useful
to draw a likelihood surface not only for a.vondmg such misleading: mfetence, bitt also for the efficient
search of the hypothesis space. If a likelihood curvature is steep we can find the stationary point
immediately.

Table 4 shows the number of reductions and the execution time of the two kinds of parallel execution
(Test 1 and Test 2) using same the data. While the number of plpts is less than 81, Test 2 is better
than Test 1 in execution time, however, the situation changes when the number of plots is 196.

We show the change of likelihood of Tree 1 for each traverse of branches in Figure 7, which reveals
that likelihood is improved drastically during the first traverse (in this case, Traverse/$ evaluate seven
branches at one traverse): However, the likelihood is not improved so much in the later ones.

The threshold, which is compared with improvement of log hkehhood to.terminate program is set
for 0. 000001 ‘

7 Discussion | B «

7.1 Comparison with the results obtained by usmg the maxlmum parsi-
mony method and DNAML

One of the most popular method to reconstmct molecular phylogenetlc trees is-the maximum parsi-
mony method. Since computational cost is low and its concept is quite easy. to understand intuitively,
many evolutionalists have used this method not only in molecular level but also in phenotypic level.
This method is suitable to examine our programs. Table 5 shows the application of the-maximum
parslmony method to the artificial sequence data of Table 1. There are two types of sites in the
maximum parsimony concept; noninformative sites and informative sites. Only the latter-type can be
used to determine a topology. The definition of the informative site is that it has at least two different
kinds of nucleotides, and each of them is represented in at least two sequences. [8]. From Table 5 we
can recogmze which tree is most optimized in view of parsimony. Tree 1 is supported if we use the
maximum parsimony method, since the total number of substitutions for this tree is the least. In



Figure 6: A log likelihood surface of Tree 2 using artificial sequence data of Table 2.

reality, this method may be positively misleading when the substitution rate is high [2]. In such case,
we have to apply another method, for instance the maximum likelihood method. o '

In comparison with the results obtained by DNAML, since a different model of nucleotide substi-
tution is used, its maximum likelihood values are slightly different from those of Table 3. However,
the result of DNAML agrees well with ours as shown above tables. These mean that correctness of
our program at least for the above artificial data. '

7.2 Evaluation of Parallel Execution

Table 4 shows that the better strategy for parallel execution may change corresponding to size of data.
As far as we investigated, there is no general distinction between two strategies in efficiency, however,
the patterns of distributed load balancing are quite different. When the number of points on a grid is
less than one of processors, the strategy of Test 2 tends to be superior to one of Test 1 in efficiency.
In data analysis size of data may vary widely, so data analysts should make careful choices for better
strategy. It should be noted that the execution time shown in Table 4 may change when profile/! [s]
is not used. ,

7.3 Reduction of Search Space

Felsenstein (3] proposed the method to reduce topology search space. In his method, branches are.
added successively to the current maximum likelihood topology. Saitou [10] introduced an alternative
strategy starting from the star phylogeny. Matsuda [7] proposed to assign lower priority to the
topologies which give lower current likelihood, not to discard ones. Although these strategies do not
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Tree 1: Maximum Log Likelihood = —344.525481
Estimated 1-6 6-~-7 7-8 2-6 3-7 4-8 5-8
length 0.031349 0.055529 0.124497 0.051341 0.096075 0.130399 0.185335

_Tree 2: Maximum Log Likelihood = —-348.403059
Estimated 1-6 6-7 '74-48 : 3-6 2-7 4-8 5-8
length 0.029848  0.011607 0.167438 0. 142446 0. 044562 0.128639 0.185361

Tree 3: Maximum Log Likelihood = —349.078628 L .
Estimated 1-6 - 67 68" 2-7 - 3T 4-8 “5-8
length 0.034358 . 0.000001 0.175856 0.052834 0.145570 - 0.128258 = 0.185331

Tree 4: Maximum Log Likelihood = —352. 774977 P o
Btimated 16 67 78 6 e & 53
length 01030363 _0.060852 oouoom 0.043210 T 114499, 0218438 0355086

Tree 5: Maximum Log Likelihood = ~362. 553462 N
“Estimated 16 67 > R =
length. ~0.065066 0.000001 0.000000. o""'iosss § 0128380 _ 0262369031570

.‘.:wv

y

Ta.ble 3: Estimated branch lengths and t;hé h;a;dmgm.ﬁg’gﬁﬁbod:‘of ieach tree

guarantee to reach the optimum tree, it is expected to-allevidte the computation time, the great
disadvantage of exhaustive search. .

Another approach can be considered. It is natural to expect that more diverged sequences never
cluster when other conserved sequences exist. We can ignore such inappropriate trees without com-
putation of likelihood. The general strategy, which we will implement to PIM, is under consideration.

8 Conclusion

It is meamngful to draw a hkehhood surface before mferrmg the ma.xlmum hkehhood va.lue It may
contribute to both accuracy and efﬁcxency of the reconstructlon of the true phylo e‘netxc tree. To
mveshga.te how hkehhood is nnp;oveq is also 1mporta.nt. Better strategy for pa el executlon de-
pends on da.ta. size cntxca]ly "Also pnonty of goals in a same node is 1mportant not onl for better
'performa.nce but also for saving memory to proceed execuﬁon We conﬁrmeﬂ tha.t pa.rallel loglc pro-

Log Lkethood
\

-346.2
3464
-346.6

[

14 21
Number of Evaluation

Figure 7: The change of likelihood of Tree 1.
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Number of plots = 16

Calculation type

Number of reductions

Execution time

Strategy 1
Strategy 2

. 26120144
26101624

44.4 gec.
37.0 sec.

Number of plots = 25

Calculation type

Number of reductions

Execution time

Strategy 1
Strategy 2

37583647
37567280

49.4 sec.
47.3 sec.

Number of plots = 36

Calculation type

Number of reductions

Execution time

Strategy 1
Strategy 2

51199188
51100387

58.6 sec.
53.3 sec.

Number of plots = 81

Calculation type

Number of reductions

Execution time

Strategy 1
Strateg_yL 2

104412165
104211904

114.4 sec.
103.2 sec.

Number of plots = 196

Calculation type

Number of reductions

Execution time

Strategy 1
Strategy 2

- 234891074
234393786

206.5 sec.
232.1 sec.

Strategy 1: Parallel execution for total log likelihood
Strategy 2: Parallel execution for individual likelihood on each site

Table 4: Two kinds of parallel execution with same data

gramming languaée KLIC/KL1 is ,ciuite_rusef,ul to code maximum likelihood method in parallelism.
We are going to develop this work mainly in the environment of PIM/p and PIM/m.
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Sequence “Number of substitutions for tree

i]J]A B C D E | m. 1 2 3 4 5

_Noninformative configuration -
1[x x x x x| 60 o6 0 o0 -0 O
2 ]x x x x y}| 10 |]1010 10 10 10
3lx x x 'y x|'7 |7 7 v 1 7%
4 |x x y x x 5 5 5§ 5 5 5
5{x 'y x x x| 3 3 3 3 3 3
6|y x x x x 2 2 2 2 2 2
7]1]x x x y 2| 2 |4 4 4 4 4
8]lx x vy s w| 1 ]38 3 8 3 3

. Informative configuration . j

9|x x x y y| 8- 6 5 & 10 10
W|x x ¥y ¥y ¥y 3 3 6 6 3 6
NnNix y x y y| 2. 2 1 2 .2 2
12|x x y -z =@ 1 2 3 3 3 3
Total’ - 10112 15 16 ‘18 21

~

a) Observed nnmbet of conﬁguratxon i
b) Informative conﬁguratxons only. -
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