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Statistical methods for computing the standard errors of the branching points of 
an evolutionary tree are developed. These methods are for the unweighted pair- 
group method-determined (UPGMA) trees reconstructed from molecular data 
such as amino acid sequences, nucleotide sequences, restriction-sites data, and 
electrophoretic distances. They were applied to data for the human, chimpanzee, 
gorilla, orangutan, and gibbon species. Among the four different sets of data 
used, DNA sequences for an 895nucleotide segment of mitochondrial DNA 
(Brown et al. 1982) gave the most reliable tree, whereas electrophoretic data 
(Bruce and Ayala 1979) gave the least reliable one. The DNA sequence data 
suggested that the chimpanzee is the closest and that the gorilla is the next closest 
to the human species. The orangutan and gibbon are more distantly related to 
man than is the gorilla. This topology of the tree is in agreement with that for 
the tree obtained from chromosomal studies and DNA-hybridization experiments. 
However, the difference between the branching point for the human and the 
chimpanzee species and that for the gorilla species and the human-chimpanzee 
group is not statistically significant. In addition to this analysis, various factors 
that affect the accuracy of an estimated tree are discussed. 

Introduction 

In recent years, an increasing number of authors have been using molecular 
data to construct evolutionary trees of species. There are several different methods 
for constructing evolutionary trees, but in all of them the accuracy of a reconstructed 
tree is quite low, unless the lengths (number of mutational changes) of all branches 
are sufficiently large (Peacock and Boulter 1975; Tateno et al. 1982; Nei et al. 
1983). There are two types of errors involved in a reconstructed tree: (1) topological 
errors and (2) errors in the estimates of branch lengths. These two types of errors 
are intricately related, since the topology and branch lengths are usually estimated 
simultaneously. If we know the pattern of amino acid replacement or nucleotide 
substitution in evolution, the standard error (SE) of an estimate of evolutionary 
distance between a pair of species can be computed relatively easily (e.g., Kimura 
1969; Kimura and Ohta 1972; Nei 1978; Nei and Tajima 1983). Some authors 
(e.g., Kumazaki et al. 1983) have substituted this error for the SE of a branching 
point. However, this does not give a correct value except under certain circumstances, 
and we need a general method for computing the SE of a branching point. 
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Evaluation of the SE is important because each branching point suggests that an 
important event of speciation or population splitting occurred there. In practice, 
however, topological errors are often introduced at the time of tree reconstruction, 
and an estimated topology may not represent the actual process of evolutionary 
changes of genes or organisms (Tateno et al. 1982; Nei et al. 1983). 

In this paper we present methods for computing the SE values of branching 
points for a tree reconstructed by the UPGMA method (see Sneath and Sokal 
1973). The UPGMA is known as a method of phenetic clustering, but Nei (1975) 
suggested that this method would give a good evolutionary tree when the expected 
rate of gene substitution is constant but the actual number of substitutions is subject 
to stochastic errors. Later, using computer simulation, Tateno et al. (1982) and Nei 
et al. (1983) showed that UPGMA is more efficient for getting the correct (true) 
tree than are several other alternative methods when a tree is reconstructed from 
genetic distances the expectations of which are proportional to evolutionary time. 
In this paper we consider four different types of molecular data: ( 1) amino acid- 
replacement data, (2) nucleotide substitution data, (3) restriction-sites data, and (4) 
electrophoretic data. We then apply the methods developed to study the reliability 
of the evolutionary trees reconstructed for the human and several ape species. 

Theory 

Amino Acid Replacement Data 

Let us consider the evolutionary tree given in figure 1. In this figure, numerals 
1, 2, 3, and 4 represent four different species, whereas numerals 5, 6, and 7 stand 
for branching points (or ancestral species). For simplicity, we assume that the rate 
of amino acid replacement for a protein is h per year per amino acid site and is the 
same for all amino acids. We also assume that the evolutionary time considered is 
relatively short, so that parallel mutations in different evolutionary lineages or back 
mutations in the same lineage are negligible. (The effect of violation of these 
assumptions will be discussed later.) Under these assumptions, the expected number 
of amino acid replacements between a pair of species is given by d = 2ht, where t 
is the time since divergence between the two species. If the total number of amino 
acids compared between the two species is n and 
acids between them is i, then d is estimated by 

d = -lo&i 

the proportion of identical amino 
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FIG. 1 .-A hypothetical evolutionary tree. I, 2, 3, and 4 represent extant species, whereas 5, 6, and 
7 represent branching points (or ancestral species). The hatched boxes represent the magnitude of SE. 
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with sampling variance 

l-i 
V(d) = - 

in (2) 

(e.g., see Nei [ 19751, p. 14). 
It should be noted that if we knew the number of amino acid replacements for 

all amino acid sites, the variance of the number of amino acid replacements per 
site would have been 2ht/n under the Poisson process. In practice, however, it is 
impossible to know these numbers, and we must estimate d by equation (1). Since 
equation (1) is based on incomplete information on amino acid replacements, 
equation (2) gives a variance larger than 2ht/n. 

In a tree reconstructed by UPGMA, the branching point between two species 
(species 1 and 2 in fig. 1) is given by b = d/2 with variance V(b) = V(d)/4, where 
b = b, = b2 in figure 1. Therefore, the SE of this branching point (5 in fig. 1) is 
given by the square root of V(b). 

In a UPGMA tree, the distance between cluster A (species 1 and 2) and cluster 
B (species 3 and 4) in figure 1 is given by 

d _ 63 + &4 + 63 + d24 
AB - 

4 , (3) 

where djk is the number of amino acid replacements between species j and k, and 
di2 and d34 are assumed to be smaller than di3, d14, d23, and dz4. The djk value is 
estimated by the equation djk = -log, ijk, where ijk is the proportion of identical 
amino acids between species j and k. From equation (3), the variance of dAB is 
given by 

V(d,,) = &[V(d13) + V(dJ + V(d& + V(d24) + 2 Cov(d13, d14) + 2 Cov(d13, d23) 

+ 2 Cov(d13, d24) + 2 Cov(d14, dz) + 2 Cov(di4, d24) + 2 Cov(d23, &A 
(4) 

and the variance of branching point 7 in figure 1 is V(bAB) = V(d,,)/4. 
The variance V(djk) in equation (4) is given by equation (2), whereas the 

covariance between di 3 and di4 is 

. 
Cov(d13, d,4) = Cov(b, + bS + bs + b3, bl + bS + b6 + b4) = V(d,,) = 1-116, 

116n 

(5) 

because b3 and b4 are independent (see fig. 1). Here, di6 is bl i- b5 + b6. In equation 
(5), i16 cannot be measured from actual data, since the ancestral species 6 does not 
exist. However, it can be estimated by 

116 = e -(bl+bS+b6) = e-dAB+d34/2 . 
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Similarly, all the other covariances can be obtained. 

1 - i35 
CoWn, &d = - 

i35n ’ 

1 - is6 
Cov(d13, &cd = CMh, &d = - 

&i-r ’ 

. 
1 - 145 

Covbh, &d = 7, 
145n 

1 - 126 
Cov(d23, d24) = 7 . 

126n 

These covariances can be computed from the values of dAB and djk. For example, 

i56 = e -dm+(dn+d34)/2 
. 

Therefore, the SE of branching point 7 in figure 1 can be estimated. 
It is now obvious that this procedure can be used for any branching point in a 

UPGMA tree irrespective of the number of species involved. In general, the UPGMA 
distance between two species clusters A and B is given by 

Cjkdjk 

dAB = - 
rs ’ (6) 

where djk is the inter-cluster distance between the jth species in cluster A and the 
kth species in cluster B, and r and s are the numbers of species in clusters A and 
B, respectively. Therefore, the variance of dAB is 

2 V(djk) + C CM&, 4nJ 
V&d = b-G2 

. (7) 

There are rs variances and rs(rs - 1) covariances of intercluster distances. (COV[djk, 
dl,] is equal to Cov[dlm, djk].) The variances involved are directly obtainable from 
an equation equivalent to equation (2). The distance contributing to COV(djk, di,) 
is given by 

d 
d(jl) + d(km) 

AB - 
2 ’ 

(8) 

where djl, and d#m) are the intrachster distances between species j and 1 and species 
k and m, respectively. Therefore, we have 

l-i 
Cov(djk, dl,) = in 7 (9) 
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i = e-dAB+(d(jl)+4km))/2 
. 

Note that djr, = 0 for j = 1 and dkmJ = 0 for k = m. 
Although the above theory is straightforward, the actual computation can be 

tedious, particularly when the number of species involved is large. However, the 
variances of branching points can be computed simultaneously with the estimation 
of UPGMA branch lengths. Such a computer program has been developed and may 
be obtained on request. 

At this point, some readers might wonder how the above formulation is related 
to Chakraborty’s (1977) study of the variance of a branch length. His study is 
different from ours on two points. First, he assumed a Poisson variance for d, so 
that it is smaller than our variance, as mentioned earlier. Second, he was interested 
in the variance of a branch length, rather than in the variance of a branching point. 
Since he assumed a Poisson variance for d, his expressions look simple. If we use 
the correct variance of d as given in equation (2), however, Chakraborty’s method 
becomes more complicated than ours. 

The variance given by equation (7) can be used for testing the statistical 
significance of the difference between two branching points in a tree, but some 
caution is necessary. When the two branching points to be tested belong to 
independent clusters (e.g., branching points 5 and 6 in fig. l), the variance of the 
difference is simply the sum of the variances of the two branching points. However, 
when the two branching points are hierarchically related (e.g., 5 and 7 in fig. I), 
there is a correlation between them. For example, the variance of the difference 
(6 = bAB - br2) between points 7 and 5 in figure 1 is given by 

V(S) = WL,d + W&d - 2 COV(dAB, 42) 
4 

. 

Therefore, if we use 

Vu@) = V&d + Wd 
4 

(11) 

(12) 

as the variance of 6, it will be an overestimate of the true variance, since COV(dAB, 
d12) is always positive. Cov(dAB, dr2) can easily be evaluated in the present case. 
That is, 

Cov(dAB, d12) = Cov 
43 + 44 + d23 + b 

42 
1 

Wd 
= V(b12) = 4 3 4. (13) 

Therefore, we can use equation ( 11) for testing bAB - br2. 
The above procedure can easily be extended to cases where both clusters A 

and B in figure 1 involve more than two species. A few examples are presented in 
the Appendix. When the number of species in cluster A is large, however, the 
computation can be quite tedious. In this case, it is convenient to note that the 
difference between V(6) and Vu(s) is usually small and that Vu(s) can thus be used 
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for an approximate test. Since Vu(s) 2 V(bAB - b12), such a test will be a 
conservative one. In the Appendix, we also present a formula [Vi_@)] for the lower 
bound of the variance of bAB - br2. This formula can be used for a liberal test if 
necessary. (See the numerical examples in the next section.) 

In the above formulation, we assumed that the rate of amino acid replacement 
is the same for all amino acid sites. In practice, this assumption does not hold for 
most proteins (Fitch and Margoliash 1967a), and the actual number of amino acid 
replacements seems to follow the negative binomial rather than the Poisson 
distribution (Uzzell and Corbin 197 1). Nevertheless, Nei and Chakraborty (1976) 
have shown that equation (1) holds approximately for most replacement patterns 
as long as d is ~1. Of course, the variance of d will be larger than that given by 
equation (2), but the extent of underestimation of V(d& given by equation (7) 
would not be serious as long as dAB < 1. Furthermore, even if it is an underestimate, 
the variance of branching points will be useful in making a proper interpretation of 
estimated trees, as long as we understand it is an underestimate. 

Nucleotide Substitution Data 

In the case of nucleotide substitution data, the relationship between the 
expected number of nucleotide substitutions per site (2ht) and the proportion (i) of 
identical nucleotides between two DNA sequences that are compared is given by 

d = -3/4 lo&[ 1 - “/s( 1 - i)] (14) 

(Jukes and Cantor 1969), and the variance of d is 

i( 1 - i) 
V(d) = n[ 1 - 4( 1 - i)/312 (15) 

(Kimura and Ohta 1972). The variances of branching points can be obtained in the 
same way as is that in the case of amino acid substitution. However, note that the 
formula corresponding to equation ( 10) is given by 

i = ‘/4 + y4e -4h[dAB-(4jl)+4km))/21. 
(16) 

Equation (14) is based on the assumption that nucleotide substitution occurs 
at random among the four nucleotides A, T, C, and G. However, this equation is 
known to hold quite well, even under nonrandom nucleotide substitution, as long 
as d is smaller than 0.5 (Kimura 1980, 198 1; Takahata and Kimura 198 1; Gojobori 
et al. 1982). Therefore, the above method for computing the variances of branching 
points seems to apply as long as d < 0.5. In the case of nonrandom nucleotide 
substitution with d 2 0.5, a more elaborate method for estimating d is necessary. 
There are several such methods, but most of them are model-dependent, and the 
computation of the variance of d is complicated. The only method in which the 
variance can be computed relatively easily is Tajima and Nei’s ( 1984). In this 
method, d is estimated by 

d=-clog, l- [ (!$)I, 
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where c is a function of the frequencies of the four nucleotides and nucleotide pairs 
between the two DNA sequences compared. In Jukes and Cantor’s formula, c = 3/4. 
Since this c can be estimated from data by Tajima and Nei’s method, one can use 
the same method of computing the variance of branching points as that used in the 
case of c = %, simply replacing 3/4 in equations ( 14), ( 15), and (16) by the estimate 
of c that is obtained. 

Restriction-Sites Data 

The evolutionary change of nucleotide sequence can also be studied by 
examining restriction cleavage site differences among different species or genes. 
When restriction enzymes with r nucleotides in the recognition sequence are used, 
the maximum likelihood estimate of the number of nucleotide differences per site 
is given by 

d = [-1o&sl 
r ’ (17) 

where S = 2mxu/(mx + my) (Nei and Li 1979; Kaplan and Risko 1981; Nei and 
Tajima 1983). Here, m x and my are the numbers of restriction sites for DNA 
sequences X and Y, respectively, and m xy is the number of restriction sites shared 
by the two sequences. The variance of d is given by 

,(,)=(2-s)(1 -‘I 
2r2mS ’ 

(18) 

where m = (mx + my)/2 (Nei and Tajima 1983). Equations (17) and (18) are quite 
accurate as long as d I 0.25. When d > 0.25, Nei and Tajima’s (1983) equations 
(2 1) and (23) should be used. However, as d increases, the reliability of the estimate 
of d gradually declines. 

Since we have the formulae for computing the mean and variance of d, the SE 
values of branching points can be estimated as in the case of amino acid replacement 
data. The equation corresponding to equation (10) is 

s = e-r[dAB-(4jl)+4km))/21 
. (19) 

When restriction enzymes with various values of r are used, the maximum 
likelihood estimate of d can still be obtained by the methods of Kaplan and Langley 
(1979), Gotoh et al. (1979), Kaplan and Risko (198 l), and Nei and Tajima (1983). 
The simplest method among these is Nei and Tajima’s (1983) iteration method. 
The variance of the estimate of d thus obtained is given by 

V(d) = n 
1 

C [l/Vi(di)l ’ 
i=l 

(20) 

where n is the number of types of enzymes 
(18) for the ith type of enzymes when 

used, and Vi(d) is the value of equation 

s = e-rid 
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is used. Here, ri is the value of r for the ith type of restriction enzymes. The 
expected value of S for the ith type of enzymes can be obtained by replacing r by 
ri in equation (19), and the corresponding variance can be obtained by equation 
(20). (See the numerical example given later in the text.) 

Electrophoretic Distance 

In the construction of evolutionary trees for closely related species or populations, 
electrophoretic data are often used. Although many distance measures are available 
for electrophoretic data, Nei’s (1972) measure seems to be most appropriate for this 
purpose, since it is linearly related to evolutionary time, at least theoretically. By 
using computer simulation, Nei et al. ( 1983) have also shown that this distance 
measure, in combination with UPGMA, is most efficient in recovering the true tree 
among the several alternative distance measures examined. Farris ( 198 1) criticized 
this measure for not permitting evolutionary path:length interpretation. However, 
this criticism is apparently based on his failure to distinguish between expected and 
observed distances (Nei et al. 1983; Felsenstein 1984). 

Let xi and yi be the frequency of the ith allele at a locus in populations X and 
Y, respectively. The gene identities within and between populations are then 
computed by jx = 2 x2, j, = 2 yf , and jx, = C xiyi, where 2 stands for the 
summation for all alleles at the locus. The average gene identities over all loci are 
simply the averages of these quantities, that is, 

i jXk 5 jYk 5 jXYk 
Jx = k=l 

n ’ 
Jy = k=l 

n ’ 
and k=l Jxy = - 

n ’ 

where k refers to the kch locus and n is the number of loci examined. Nei’s 1972) 
standard genetic distance is then defined as D = -log, I, where I = Jxy/ $_ JxJy. If 
the time after divergence between populations X and Y is t years and the two 
populations are in equilibrium with respect to the effects of mutation, selection, 
and genetic drift, the expectation of I is given by I = e-2ut, where a is the rate of 
gene substitution per locus per year. Therefore, D = 2at. 

The D value between a pair of species or populations and its variance can be 
estimated by the methods of Nei and Roychoudhury (1974) and Nei (1978), 
although these methods are more complicated than those for amino acid replacement 
or nucleotide substitution. However, it is not always easy to compute the variance 
of branching points, since the allele frequencies of ancestral populations such as 
those for branching points 5 and 6 in figure 1 are not known. The only cases in 
which this is not a problem are those in which (1) all populations examined have a 
relatively low average heterozygosity and are fixed for different alleles at some loci 
or (2) different strains in asexual haploid organisms such as Escherichia co/i (e.g., 
Selander and Levin 1980) are studied. In these cases the variance of D between a 
pair of populations is given by 

1-I 
V(D) = --jy- (21) 

(Nei 197 I), and all other procedures for obtaining the variance of branching points 
are the same as those for amino acid sequence data. 
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In practice, the applicability of equation (2 1) depends on the value of I relative 
to average heterozygosity (H). When I is do.9 for all pairs of populations, and H is 
~0.2, equation (21) seems to give a quite reliable estimate, as long as many loci are 
examined. This is because in this case the genetic identity for a single locus 
(Ij = jXY/iE) shows a distribution close to the binomial distribution, with Ij 
taking a value of 0 or 1 for a majority of loci. When I is ~0.9 for most population 
pairs, however, equation (2 1) may give a serious overestimate of the true variance. 

Although it is difficult to develop a general method for computing the exact 
variance of a branching point, it is possible to get an upper bound or a maximum 
estimate of the variance. This maximum estimate is the average of the variances of 
all pairwise distances used for computing a branching point. For example, branching 
point 7 in figure 1 is given by half the average (DAB) of D13, Did, D23, and DZ4 in 
the case of electrophoretic data. The maximum variance of DAB is then given by 

V@AB) = 
Wh3) + V(Dl4) + V(D23) + V(D24) 

4 
. (22) 

This variance is obviously larger than the true variance given by an equation 
equivalent to equation (4) or equation (7). (Note that the divisor of the right hand 
side of equation (22) is rs = 4, whereas that of equation (4) is (rs)2 = 16.) However, 
as long as we understand that equation (22) gives an upper bound of the true 
variance, we can use it for getting a rough idea of the reliability of branching points. 
The accuracy of V(bAB) = V(DAB)/4 as an estimate of the variance of a branching 
point depends on tree structure. If most intracluster branches are short, the accuracy 
is quite high. However, if there are many long branches within each cluster, the 
variance may be seriously overestimated. In general, this method should be used 
only when equation (22) gives a smaller value than does equation (21). This is 
expected to occur when the I values are large, for example, >0.9. 

Evolutionary Tree For the Human and Ape Species 

In the past 10 yrs the genetic relationship of the human and ape species has 
been studied intensively by using various types of molecular data. In the following, 
we apply our methods to four different types of data. 

Amino Acid Sequence Data 

Although amino acid sequencing of proteins was started more than 20 yr ago, 
the sequence data for the human and ape species are still limited. The only data 
that can be used for our purpose are those for hemoglobins c1 and p, myoglobin, 
and fibrinopeptides A and B for the human, chimpanzee, gorilla, and orangutan 
species (Dayhoff 1972, 1973, 1978; Goodman et al. 1983). There are also data for 
two partial sequences (13 amino acids each) of the duplicate hemoglobin y chains 
for these organisms (Huisman et al. 1973). The rate of amino acid substitution for 
fibrinopeptides is known to be significantly higher than that for hemoglobins. 
However, since the sequence differences among these four species are very small, 
we can pool the sequences together to compute the proportion of different amino 
acids (p = 1 - i) for each pair of these species, using a total of 496 amino acids for 
comparison. From these proportions, the number of amino acid replacements per 
site (d) and its SE can be computed by equations (1) and (2). The results obtained 
are presented in table 1. In the present case, d = -lo&( 1 - p) is virtually identical 
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Table 1 
Proportions of Different Amino Acids and Estimates of Amino Acid Replacements 
for Four Primate Species 

Human Chimpanzee Gorilla Orangutan 

Human . . . . . 0.0020 0.0060 0.0202 
Chimpanzee . . . 0.0020 + 0.0020 0.008 1 0.0222 
Gorilla . . . . 0.0061 + 0.0035 0.0081 + 0.0040 0.0222 
Orangutan . . 0.0204 +- 0.0064 0.0224 f 0.0068 0.0224 f 0.0068 

NOTE.-Numbers above the diagonal are the proportion (p = 1 - i) of different amino acids for hemoglobins a, p, 
‘y, G~; myoglobin; and fibrinopeptides A and B for the species pairings indicated. Numbers below the diagonal are 
numbers of amino acid replacements per site (*SE) for the species pairings indicated. The number of amino acids used 
for hemoglobins a, p, 3. and Go; myoglobin; and fibrinopeptides A and B are 141, 146, 13, 13, 153, and 30, respectively, 
for a total of 496. The data for hemoglobin 9 and “7 refer to a region (13 amino acids) sequenced by Huisman et al. 
(1973). The amino acid sequence for the remaining region is not known for all four of the species examined. The data 
on sequence differences for the orangutan hemoglobin-a and -p chains are those of Goodman et al. (1983). All other 
data were obtained from Dayhoff (1972, 1973, 1978). 

with p, since p is very small. The evolutionary tree reconstructed from the d values 
by using UPGMA is given in figure 2. The branching point (a) between the human 
(H) and chimpanzee (C) species is bHc = 0.0020/2 = 0.0010 (from table I), and the 
SE is 0.0020/2 = 0.00 10, which is identical with b HC, Since bHc is Small. Similarly, 
the branching point (b) between the gorilla (G) and the human-chimpanzee lines is 
btHcG = (0.0061 + 0.0081)/4 = 0.0036. 

The variance [V(b (H&I of b(HCG is V@(HC)C)/~~ where 

V(d(Hc& = 
V6h-d + V&c) + 2 COV(dm, &G) 

4 , (23) 

from equation (7). We have V(d& = (0.0035)2 and V(d& = (0.0040)2 (from the 
SE values in table 1). To compute Cov(d HG, &G), we must know the expected 
distance between the gorilla species (G) and the branching point (a) between the 
human and chimpanzee species. It is given by d = 2btHCG - bHC = 0.0062. 
Therefore, the corresponding i value is e -“.oo62 = 0.9938, from equation (10). Thus, 
COV(dHG, d& = V(d) becomes 1.258 X 10W5, from equation (9). Hence, the SE of 
b(HcG = [v(d(HC)C)/411’2 = 0.0018. The SE of branching point c can be obtained in 

.OOl 

FIG. 2.-Evolutionary tree for four hominoid species, which was reconstructed from amino acid 
sequence data. The number given for each branch represents the branch length or the number of amino 
acid replacements per site. The hatched box represents 1 SE on each side of the mean branch length. 
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Table 2 
Numbers of Nucleotide Substitutions per Site (d) for Five Primate Species 

Human Chimpanzee Gorilla Orangutan 

Chimpanzee . . . 0.0939 -+ 0.0107 
Gorilla . . . . 0.1106 -+ 0.0118 0.1145 f 0.0120 
Orangutan . 0.1797 f. 0.0156 0.1940 + 0.0163 0.1882 + 0.0160 
Gibbon . . . 0.2072 -t 0.0 170 0.2175 f 0.0175 0.2175 -e 0.0175 0.2160 f 0.0174 

NOTE-Data from Brown et al. 1982. In the computation of d, 895 nucleotides were used because there was one 
nucleotide deletion in the segment of the orangutan mtDNA. 

the same way, and it becomes 0.0032. These results are presented graphically in 
figure 2. The difference between branching points a and b can be tested by using 
the normal deviate (t). In the present case, t becomes (0.0036 - O.OOlO)/[O.OOl 82 
+ 0.00 102/2] ‘I2 = 1 34 by using equation (A3), so that the difference is not . 
statistically significant. If we had used the approximate variance, as calculable by 
equation ( 12), t would have been 1.26, which is not much different from the correct 
value. On the other hand, the difference between branching points b and c is 
significant at the 5% level, since we have t = 0.0074/0.0035 = 2.10 by using 
equation (A5). The same conclusion is obtained by using equation (12), which gives 
t = 2.00. A similar t value (t = 2.15) is also obtained by using the lower bound 
variance, V&), in equation (A7). 

Nucleotide Sequence Data 

Brown et al. (1982) sequenced a segment (896 nucleotides) of mitochondrial 
DNA (mtDNA) for the human, chimpanzee, gorilla, orangutan, and gibbon species. 
From these sequence data, we can estimate d and its SE by using equations (14) 
and (15), respectively. The results obtained are presented in table 2, and the 
UPGMA tree obtained from these distance data is given in figure 3. If we exclude 
the gibbon, the topology of this tree is identical with that of the tree derived from 
amino acid sequence data. The branching point (a) between the human and 
chimpanzee species is bnc = 0.0939/2 = 0.0470 (from table 2). The SE of this bnc 
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FIG. 3.-Evolutionary tree for five hominoid species, which was reconstructed from nucleotide- 
sequence data on a segment of mitochondrial DNA. The number given for each branch represents the 
branch length or the number of nucleotide substitutions per site. The hatched box represents 1 SE on 
each side of the mean branch length. 
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= 0.0107/2 = 0.0054. Similarly, the branching point (b) between the gorilla and 
the human-chimpanzee groups is b (nc)G = (0.1106 + 0.1145)/4 = 0.0563. 

The variance of bfHCF can be obtained by using equation (23). In the present 
case, V(dHo) = (0.01 18)2 and V(d,& = (0.0120)2 (from table 2). On the other 
hand, the expected distance between the gorilla and branching point a is given 
by d = 2bcHCG - bHC = 0.0656, so that the corresponding i value is 1/4 + (3/4) 
X exp[-(4/3) X 0.06561 = 0.9372, from equation (16). Thus, Cov(dHG, dcG) = V(d) 
becomes 7.833 X 10v5, from equation (15). Therefore, the SE of bcHCK = 0.0052. 
Similarly, the SE values of branching points c and d in figure 3 become 0.007 1 and 
0.0074, respectively. The differences between branching points a and b and those 
between branching points c and d in figure 3 are not statistically significant. 
However, the difference between branching points b and c is significant, t being 4.5. 
In this case, equation (12) gives t = 4.2, whereas equation (A7) gives t = 4.6. 

Restriction-Sites Data 

A phylogenetic tree for these five primate species can also be constructed from 
Ferris et al.‘s (198 1) restriction-sites data. Estimates of the numbers of nucleotide 
substitutions are obtained from the data in table 3 by using Nei and Tajima’s (1983) 
equations (25) and (28). This table includes data on the number of restriction sites 
and the number of shared restriction sites for eighteen six-base enzymes and one 
four-base enzyme. Ferris et al. (198 1) used two six-base enzymes with four 
recognition sequences (AvaI and HincII). Two of the four recognition sequences of 
each of these two enzymes were identical with those of two other six-base enzymes. 
For example, HincII recognizes the four sequences GTTGAC, GTCAAC, GTTAAC, 
and GTCGAC, but the sequences GTTAAC and GTCGAC are also recognized by 
HpaI and SaZI, respectively. In the case of AvaI and HincII, we have therefore 
considered only those restriction sites that were not recognized by the other enzymes. 
We note that two mutational changes are required to transform one of the two 
remaining recognition sequences (e.g., GTTGAC and GTCAAC in HincII) to the 
other, so that the shared restriction sites for a pair of species (unique to these 
enzymes) must almost always have an identical sequence (e.g., GTTGAC or 
GTCAAC in HincII). Therefore, each of these two enzymes can be regarded as 
consisting of two different enzymes with r = 6. This makes the total number of 
enzymes with r = 6 equal to 20. 

Table 3 
Numbers of Restriction Sites (m) and Shared Restriction Sites (mxv) for the Mitochondrial 
DNAs from Five Primate Species 

Human Chimpanzee Gorilla Orangutan Gibbon 

Human . . 
Chimpanzee . . 
Gorilla . . . 
Orangutan . . . 
Gibbon . . . . . 

42 (6) 
19 (6) 42 (6) 
22 (4) 25 (6) 42 (6) 
20 (4) 15 (4) 16 (4) 36 (10) 
17 (4) 15 (4) 18 (4) 14 (5) 47 (7) 

Nom-The figures in front of parentheses are the sums of m or m xy for 18 6-base enzymes, whereas those in 
parentheses are the values of m or m xy for one 4-base enzyme used. The values on and off the diagonal are m’s and 
mxy’s, respectively. Data from Ferris et al. (198 1) were used. 
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Table 4 
Numbers of Nucleotide Substitutions per Site for Five Primate Species 

Human Chimpanzee Gorilla Orangutan 

Chimpanzee . . . 0.1142 f 0.0209 
Gorilla . . . . 0.1071 + 0.0198 0.0880 + 0.0171 
Orangutan . . . . 0.1194 + 0.0219 0.1613 f 0.0283 0.1521 f 0.0268 
Gibbon . . . . . . . 0.1556 f 0.0262 0.1735 k 0.0289 0.1474 + 0.0250 0.1729 f 0.029 1 

NOTE.-Data from Ferris et al. (198 1). 

The estimates of the number of nucleotide substitutions obtained are presented 
in table 4. The estimates of substitutions between the human and chimpanzee 
species and between the human and gorilla species are virtually the same as those 
derived from the nucleotide sequence data, but the estimates for the other pairs of 
organisms are smaller than those derived from the sequence data, the difference 
between the two sets of data increasing with increasing d. This difference could be 
due to either inaccuracy of the estimates obtained from restriction-sites data or the 
difference in the rate of nucleotide substitution between the sequenced region and 
the entire region of mtDNA. We note that the SE values of d’s derived from 
restriction-sites data are considerably larger than those derived from sequence data. 

Figure 4 shows the UPGMA tree reconstructed from the d values in table 4. 
This tree has a topology different from that in figure 3. That is, among the human, 
chimpanzee, and gorilla species, the latter two cluster first in this tree, whereas in 
the tree in figure 3, the human and chimpanzee species make the first cluster. All 
other parts of the topology are the same for the two trees. 

The branching point (a) between the chimpanzee and the gorilla and its SE 
can be obtained directly from table 4. That is, bco = 0.0440 + 0.0085. The 
branching point (b) between the human and the chimpanzee-gorilla group is bn(co) 
= (0.1142 + 0.1071)/4 = 0.0553. The variance of this branching point can be 
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FIG. 4.-Evolutionary tree for five hominoid species, which was reconstructed from restriction sites 

data for mitochondrial DNA. The number given for each branch represents the branch length (the 
number of nucleotide substitutions per site). The hatched box represents 1 SE on each side of the mean 
branch length. 



Standard Errors of Branching Points 79 

obtained by an equation similar to equation (23). From table 4, V(duc) = (0.0209)* 
and V(duo) = (0.0199)*. We also have Cov(duc, dno) = V(d), where d = 2bH(cGJ 
- bco = 0.0667. The value of V(d) can be computed by [ 2, V,(d)-‘]-‘, where VXd) 
is the variance of d for r-base enzymes given by (2 - S)( 1 - S)/[2r2mS] (Nei and 
Tajima 1983). Here, S = eYrd, and m is the mean number of restriction sites. Nei 
and Tajima (1983) defined m as the mean for the two species to be compared, but 
in the present case, m should be defined as the mean for all species being investigated, 
since we are computing the expected variance of d for the entire set of data. This 
mean can be obtained from the data in table 3, and it becomes 42 for the six-base 
enzymes and 7 for the four-base enzyme. Therefore, we have V,(d) = 0.00022, and 
V,(d) = 0.0017. Thus, V(d) = 0.00019, and V(du(co)) = 0.00030. Hence, the SE of 
bH(eGJ = 0.0087. The SE values of all other branching points can be obtained in the 
same way. The results obtained are presented graphically in figure 4. It can be seen 
that the SE values of the branching points are considerably larger than those of the 
tree obtained from nucleotide sequencing (fig. 3). The difference between branching 
points a and b is again statistically nonsignificant. In the present case, even the 
difference between branching points b and c is not significant. 

Electrophoretic Data 

The phylogenetic relationship of the human and ape species was also studied 
by Bruce and Ayala (1979) by using electrophoresis. They examined the electropho- 
retie variation of 23 protein loci for man, two species of chimpanzee (Pan troglodytes 
and P. paniscus), the gorilla, two subspecies of orangutan (Pongo pygmaeus abelii 
from Sumatra and P. p. pygmaeus from Borneo), two species of gibbon (Hylobates 
lar and H. concolor), and the siamang. Bruce and Ayala did not use their own data 
on the human species. Instead, they used data obtained by other workers. It is 
therefore difficult to reconstruct their computation of genetic distances between the 
human and other primate species. In the following, we have eliminated from our 
analysis all data concerning the human species. Data concerning the siamang have 
also been eliminated, since they were derived from only one individual. Although 
they studied 23 protein loci, Bruce and Ayala found a few species in which gene 
frequency data could not be obtained for a few loci. We therefore eliminated the 
Borneo orangutan and used the 20 loci that were shared by the remaining six 
species. Estimates of genetic distances and their SE values were computed by using 
Nei’s (1978) method. The results obtained are presented in table 5. In this table, 

Table 5 
Genetic Distances and Average Heterozygosities for Six Species of Apes 

Chimpanzee 
%w 

Chimpanzee Gorilla Orangutan Lar Gibbon 
Concolor 
Gibbon 

Chimpanzee . 
Pygmy chimpanzee 
Gorilla 
Orangutan 
Lar gibbon 
Concolor gibbon 

L 0011 0.107 0.475 0.269 0.668 0.806 
0.077 (0.075) 0 0.419 0.140 0.661 0.799 
0.176 (0.174) 0.164 (0.161) 0.054 0.546 0.510 0.666 
0.124 (0.124) 0.084 (0.087) 0.192 (0.191) 0 L 055 0.634 0.633 
0.220 (0.218) 0.219 (0.216) 0.184 (0.182) 0.210 (0.210) 0.052 0.133 
0.255 (0.249) 0.254 (0.247) 0.223 (0.217) 0.215 (0.210) 0.082 (0.084) 0 

NOTE.-Figures above the diagonal are genetic distances, those on the diagonal are average heterozygosities, and those below the diagonal 

are the SE’s of genetic distances. The SE’s of genetic distances in parentheses are those obtained by equation (21). Data from Bruce and Ayala 

(1979) are used. 
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the SE values obtained by equation (21) are given in parentheses. It is clear that 
these SE values are very close to those obtained by Nei’s more accurate method. 
This is because I is ~0.9 for all pairs of species, and the average heterozygosity is 
low for all species (table 5). In computing the SE values of branching points, 
we can therefore use the same method as that for amino acid sequence data. 

The UPGMA tree reconstructed from the genetic distances listed in table 5 is 
given in figure 5. The topology of this tree is different from that of all previous 
trees, the orangutan being closer to the chimpanzee than to the gorilla. In the 
present case, the SE values of branching points a, e, and b become 0.037, 0.042, 
and 0.050, respectively. The SE values of the other branching points are shown 
graphically in figure 5. It is seen that the phylogenetic tree constructed from 
electrophoretic data is even less reliable than that obtained from restriction sites 
data. Although the orangutan clusters with the chimpanzee before it joins with the 
gorilla, the SE of the branching point (c) between the gorilla and the chimpanzee- 
orangutan group is so large that the distance between b and c is not statistically 
significant. The branching point between the gibbon and the other apes also has a 
large SE. 

This low reliability of electrophoretic data is partly due to the small number 
of loci used. In a computer simulation, Nei et al. (1983) have shown that when the 
number of loci used is ~30, the topology of a reconstructed tree is subject to a large 
stochastic error. The accuracy of a reconstructed tree also depends on the detectability 
of protein differences by electrophoresis. The higher the detectability, the higher the 
reliability. It should be noted that in Bruce and Ayala’s experiment, this detectability 
was not particularly high. Previously, King and Wilson (1975) had studied the 
genetic distance between the human and chimpanzee species and obtained 
D = 0.62, which is nearly two times higher than the estimate (0.39) obtained by 
Bruce and Ayala. 

Discussion 

In the present paper, we have assumed that the expected number of gene 
substitutions is proportional to evolutionary time, although the actual number may 
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FIG. 5.-Evolutionary tree for six hominoid species, which was reconstructed from electrophoretic 
data. The number given for each branch represents the branch length (genetic distance). The hatched box 
represents 1 SE on each side of the mean branch length. 
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deviate from the expected number because of stochastic errors. This assumption is 
necessary for estimating the topology and branch lengths of a UPGMA tree. In 
practice, of course, it would not always hold, and if it does not, a reconstructed tree 
may deviate substantially from the true tree. Deviations of reconstructed trees from 
the true trees also occur because of stochastic errors in the process of gene 
substitution, unless the number of amino acids or nucleotides examined is very 
large (Tateno et al. 1982; Nei et al. 1983). Therefore, caution should be exercised 
in the interpretation of a tree reconstructed from molecular data. 

Some tree-making methods, such as Fitch and Margoliash’s (1967b) and Farris’s 
(1972) parsimony methods, are designed to take care of unequal rates of gene 
substitution in different branches. In these methods, however, even stochastic errors 
are considered to be a reflection of unequal rates of gene substitutions, and this 
introduces another source of error into the process of tree making. Indeed, in the 
presence of large stochastic errors, Fitch and Margoliash’s and Farris’s methods are 
not necessarily better than UPGMA in recovering the true tree, even if the 
substitution rate varies with branch to some extent (Tateno et al. 1982). Furthermore, 
in parsimony methods, it is not easy to compute the SE values of branching points 
since there is no way to compute the expectation and variance of gene substitutions. 

We have computed the SE values of branching points for four different types 
of molecular data and found that the SE values relative to the means or the 
coefficients of variation are smallest for nucleotide sequence data and largest for 
electrophoretic data. The smaller coefficients of variation for nucleotide sequence 
data than for amino acid sequences are mainly due to two factors: (1) the number 
of nucleotides examined is larger than the number of amino acids examined and 
(2) the d values for nucleotide sequence data are larger than those for amino acid 
replacement data. The coefficients of variation for nucleotide sequence data are also 
substantially smaller than those for restriction sites data. This is largely because the 
number of nucleotides assayed is larger in the former than in the latter. In general, 
the average number of nucleotides assayed by restriction enzymes having r nucleotides 
per DNA sequence is given by rrii. In the present case, iii = 42 for r = 6, and m = 7 
for r = 4. Therefore, it becomes 6 X 42 + 4 X 7 = 280. This is approximately one- 
third of the number of nucleotides assayed (895) in nucleotide sequencing. 

As is clear from figure 5, electiophoretic data show the largest coefficients of 
variation of d (=D) among the four types of data used here. This is partly because 
the number of loci examined (20) is small in the present case. However, even if one 
uses 80 loci, the coefficients of variation would be only approximately half of those 
given in figure 5 and still considerably higher than those for nucleotide sequences 
of mtDNA. Therefore, electrophoretic data seem to be less informative than mtDNA 
data, unless a very large number of loci are examined. However, electrophoretic 
data have one advantage over mtDNA data, namely, that they give an average 
evolutionary change of genes for many loci, whereas mtDNA represents a small 
piece of DNA, which is maternally inherited without gene recombination. The 
evolutionary tree reconstructed from a single piece of DNA without recombination 
is subject to larger stochastic errors than that reconstructed from many independently 
evolving genes. 

In this paper, we reconstructed the evolutionary tree of the human and several 
ape species using four different types of data. The topology of the tree reconstructed 
is not the same for all types of data. The most reliable tree among the four that 
were reconstructed seems to be that obtained from nucleotide sequence data. In this 
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tree, the gibbon and the orangutan separate from the human, chimpanzee, and 
gorilla species significantly earlier than the latter three species diverge. Among the 
latter three species, the gorilla diverges from the human earlier than the chimpanzee 
does, but the difference between the two branching points is not statistically 
significant. Therefore, we cannot rule out the possibility that the three species 
diverged at nearly the same time (Sarich and Wilson 1967). The results derived 
from protein data are essentially the same as those derived from nucleotide sequence 
data. It should also be noted that this topology is in agreement with that of the 
trees reconstructed by both chromosomal studies (Yunis and Prakash 1982) and 
DNA hybridization (Sibley and Ahlquist 1984). However, the topology of the 
parsimony tree obtained by Brown et al. (1982) is different from ours, even though 
the same set of data was used. In a statistical analysis of the parsimony tree 
reconstructed by Ferris et al. (198 I), Templeton (1983) concluded that the to- 
pology in figure 4 is significantly better than that in figure 3. How- 
ever, his conclusion is not justified, since the parsimony method he used intro- 
duces many statistical biases when it is applied to restriction sites data (Nei and 
Tajima 1984). 
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APPENDIX 

Since it is not easy to develop a general algorithm to compute the variance of 
the difference between two branching points that are hierarchically related, we 
herewith illustrate the computation in a consideration of three typical cases. In 
general, we consider the case in which the two species clusters A and B join at 
branching point b Aa and, within cluster A, the two subclusters Al and A2 join at 
branching point bAI A*. We then evaluate the variance of the difference between the 
two branching points (6 = bAB - bAIAZ ). For mathematical convenience, we consider 
the variance [V(&)] of 6, = 26 = dAB - dA 1A2. Obviously, V(S) = V&-$4. In 
general, 

v&) = WLB) + WA,,& - 2 COV(dAB , 6 d (Al) 

We already know how to compute V(dAB) and V(dAIA2). So, we consider the 
COmpUtatiOn of Cov(dAB, dA,AZ) only. 

Case I: Al and A2 each have one species, and B has s species. When s = 2, 
this is identical with the case represented in figure 1. In this case, we have 

, dAIA2 
1 

Ward + Wad V(dAw) 
= s =- 

2s 4 ’ 

where a is the branching point between Al and A2, and baAl and baA2 refer to the 
branch lengths between a and Al and between a and A2, respectively. Therefore, 

V@Ad 
V&I) = V&d + --j-- * (A3) 
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Case 2: Al, A2, and B contain two, one, and s species, respectively. 

i=l 

= s[V(ba,& + V&J + Wwd + V&,4 + WaAl(2)) + Wa.d/(6~) 

= W(dm,d + 2Wap)l/6, (A4) 

where c1 is the branching point between Al and A2, and p is that between the two 
species in A 1, that is, A 1 ( 1) and A l(2). Hence, V(&J is given by 

v(b) = Vk-bd + 
2[V(&,A2) - Wap)l 

3 
. 

V(b,& can be obtained by equation ( 10) or its equivalent formula. 

Case 3: Al and A2 both contain two species, and B has s species. 

COV(dAB, dAIAZ) = COV[i (&l(l) + &+1(Z) + d iA2( 1) + diA2(2))/(4S), (& 1( l)A2( 1) 
i=l 

+ dA1(,)A2(2) + &,(2)A2(1) + dA,(2)A2(2))/41 = 
V@Am) + Wap) + Way) 

8 4 
9 646) 

where y is the branching point between two species in A2, that is, A2( 1) and A2(2). 
Therefore, we can compute V&J and V(S). 

The above procedure can be extended to any type of branching pattern, but it 
is quite complicated if many species are involved. In this case, one may use the 
approximate f0mm.h COV(dAB , dAIA2) = V(dA,,&/4. This iS exact for CaSe 1 but 
gives a slight overestimate of the true covariance for the other cases. It can be 
derived by assuming that the variances of b,,, b,, etc., are equal to the variance of 
baA 1 or baA2. This provides a lower bound of the variance of 6, that is, 

(A% 

v 

L 
(6) = [V(dAd + V(‘hd21 

4 
. W) 
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