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Abstract

In the past few years, rapid advances have been madein
sequencing the genomic DNA of human, Caenorhabditis
elegans, and so on. As a result, a large number of novel
glycosyltransferase genes have been discovered from those ge-
nome sequences. How did they increase their family members
during the genome evol ution? To presume the evolutionary path-
way of glycosyltransferases, we have used the molecular evolu-
tionary analysis (1). In that study, we conducted molecular evo-
Iutionary analyses on 55 glycosyltransferase genes and mainly
discussed about glycosyltransferase genes for N- or O-glycan
synthesis. The phylogenetic trees showed the glycosyltransferase
genes increased their numbers through gene duplications. We
also estimated the divergence time of each branch root and sug-
gested that the glycosyltransferase genes increased their num-
bers through gene duplications and genome duplications. Com-
parison of evolutionary rates indicated that the glycosyltrans-
ferases tend to evolve more slowly than other genes, and the
evolutionary rates changed within each of the glycosyltransferase
gene families. These results indicate that the increase in
glycosyltransferase genes allows the amino acid change and
permits, the creation of the variety of specific activity of the
enzyme. Here, we would like to introduce the essence of the
evolutionary history of glycosyltransferase genes.
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A. Construction of Phylogenetic Tree and Estimation of Di-
ver gence Time of Phylogenetic Trees

All carbohydrate chains are synthesized through the co-
ordinated reaction of glycosyltransferases through a step-by-step
elongation. Glycosyltransferases catalyze the transfer of sugar
residues from nucleotide sugars (donor) to a growing carbohy-
drate chain (acceptor) and are usually very specific for both do-
nor and acceptor substrates. Glycosyltransferases can be grouped
into functional families based on their sequence similarities,
which reflect their enzymatic character: donor specificity, ac-
ceptor specificity, and linkage specificity between donor and
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Fig. 1. The phylogenetic tree of a1,3Fucosyltransferase. The root was determined previously
(assuming that C. elegans were located as outgroups) and indicated with a dotted line. Gene duplicaion
within the a1,3FucT family occurred before the emergence of Pisces, after the divergence between
vertebrates and invertebrates. The number in brackets refers to the branch length (amino acid substitu-
tion/site). The branch lengths indicate evolutionary distances between different genes. Bootstrap values
are shown on each branch. Open diamond marks indicate the gene duplication and solid circlesindicate

the speciation of human and rodents.

acceptor. We conducted molecular evolutionary analyses on 55
glycosyltransferase genes and they constitute at least 15 phylo-
genetic trees (1). This was the first example of an analysis of
such alarge number of glycosyltransferase genes through mo-
lecular evolutionary methods. We have indicated the phyloge-
netic tree of al,3Fucosyltransferase gene family (Fig. 1) asan
example and will explain how we performed molecular evolu-
tionary analyses.

al,3Fucosyltransferase (a1,3FucT) transfers a fucose
(Fuc) from guanosine diphosphate-fucose (GDP-Fuc) to N-
acetylglucosamine (GIcNAC) of atype 2 chain, Gal31,4GIcNAc-
R, with a1,3-linkage. The genes encoding al1,3FucT form a
a1,3FucT family. So far, the human genes encoding six
al1,3FucTs (FucTlll, IV, V, VI, VII and IX) have been cloned.

Fig. 1 shows that the inferred tree of the a1,3FucT fam-
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Fig. 2 Estimation of evolutionary rate and divergence time. The divergence time of roots for each gene
group is estimated by using regression through the origin. For example, it indicates comparisons between amino
acid substitutions and divergence times from a cluster of the FucTIV gene. The cluster of the FucTIV gene has
four OTUs (human, mouse, rat and chicken). The divergence time between mouse and rat was 41IM YA (A),
human and rodents was 112M YA (B), human and chicken was 310M YA (C). Thetime (D) of the root of FucTIV
gene cluster was calculated to correspond to about 462M YA.

ily revealed four separate subfamilies: 1: FucTIX (human,
mouse, and zebrafish), 2: FucTIV (human, mouse, rat, and
chick), 3: FucTVII (human and mouse), and 4: FucTVI (three
human FucTs, hamster cgFUT6, and bovine futh). The root de-
termined previoudy (2) wasindicated asadotted line. Nishihara
et al. (3) determined in detail the characterization of
fucosyltransferase activity for polylactosamine units. FucTIX
exhibited a completely different specificity of Fuc transfer to
GlcNACc residues from the other four a1,3FucTs. FucTIX pref-
erentially fucosylates the distal GIcNAc residue of
polylactosamine chain, while the other four FUCT members,
FucTIll, FucTIV, FucTV and FucT VI, preferentially fucosylated
theinner GIcNAc residue. FucTVII could not transfer a fucose
to an acceptor, which is non-sialylated. The enzyme activities
are very compatible with the phylogenetic tree of Fig. 1.

Then we estimated the divergence time of the FucT gene
groups. More than three OTU (operational taxonomic unit) al-
low us the estimation of the divergence time on the assumption
that the evolutionary rate is constant. Fig. 2 indicates the rela-
tion between amino acid substitutions (d) and divergence times
(). Divergence times of roots of each gene groups are estimated
by using the regression through origin. As for example, the
FucTlV gene cluster has four OTUs, human, mouse, rat and
chicken. The divergence time between mouse and rat was
41IMYA (A), that between human and rodents was 112M YA
(B) and that between human and chicken was 310MYA (C),

gboooobo4000000000000000010 FucTIXO
O00000@ODO0O0000DoOoOOO0O0)o20FucTivd
OO0O0OOO@EOoOoOooobobooboooboOoDn)osoFuctviO
oooooO@EoOOOOO0)d40FRucTVIDOOODOODO@EODO
OCFucTOOOOOCOOO)YWOOOOODOODOOOOOE@O
goo@oooooooOoOoooooooooooooooo
O000bD0bo0oobobDOrRcTIXOOOODODOOOODOD
gboboooooooboboboboboooooboobon
O000OFReTIXODOODOOOODOOOODODOOOODOOD
gobooooboooboOrReceTVIODOODOOODOOODOODO
gbooobooboobobooN-obobooobooboboboo
goboooobOO0OrReccTVIODODODOOODOOODOOODOOO
gboboooooobooboboboboboooooboooboon
gbooboooooooboobon
oobooboboooobooobooboboobobooobsnoon
gortvboooooobooooobooooooooooog
00000020 0000000000000@WOOOOD
gboboooooobooboobobobobooooobooboon
O0OFucTIiVOOOOO400O0OTUOODOM@MODODOODOO
O00ooOoO0)§oboooooDOoOoOoooOo4MYAADDO
O000D0O0ooOoo0i112MYAB)DODOOODOOOODOO
3IOMYAC)DODODODOOM@OFucTIiVOODODODODODOO

149 ©2001 FCCA (Forum: Carbohydrates Coming of Age)



Eukaryote/Prokaryote ancestor

e

Trends in Glycoscience and Glycotechnology
Vol.13 No.70 (March 2001) pp.147—18% 3 Kaneko

1500 MYA Prokaryote Eukaryote .
Mgat series was present.
/ * ~¢— Divergence of p4GalTs and peptide-GalNAcTs
1200 MYA . P:)ants Metazoans al,6FucT gene was present.
f\'\::;’izir;its acum, Gene duplication of peptide-GalNAcTs
Divergence of p4GalTs and GalT7
< Divergence of g1,3GalTs and B1,3GnTs
Divergence of ST3, ST6, and ST8
800 MYA  Proteostomes  Deuterostomes
(C. elegans, Gene duplication of B1,4GalTs (450~852MYA)
Drosophila) - .
- Gene duplication of p1,3GalTs
 J Gene duplication of ST3s (468~568MYA), ST6s (561MYA), ST8s (857TMYA)
600-700 MYA  Invertebrates Vertebrates —
Gene duplication of al,3FucTs (424~462MYA)
< Gene duplication of a1,3GalTs/al1,3GalNAcTs (485MYA)
 / Gene duplication of B1,6GnTs (370MYA~534MYA)
80MYA  Non-mammals Mammals <= Gene conversion of al,2FucTs

(Chicken)

Divergence of inter-gene family

Gene duplication of Intra-gene family

Fig. 3. Evolutionary events of glycosyltransferase genes. We summarized the divergence time of each branch root.
It suggests that the gene duplication of intra-gene family was concentrated around the early period of vertebrate lineage.

(4). Thetime (t) of the root of the FucTIV gene cluster was as-
sumed to correspond to 462M YA (D). Likewise, times of the
root of FucTVII, and FucTIX were assumed to be 424MYA,
and 1.3BYA, respectively. The evolutionary rate of the FucTIX
genewas very low, thusthe divergence time of theroot of FuUcTIX
was over estimated. Therefor gene duplication within the
a1,3FucT family occurred before emergence of the Pisces, af -
ter divergence between Vertebrates and Invertebrates.

We performed molecular evolutionary analyses on 55
glycosyltransferase genes and constructed 15 phylogenetic trees
(2). Then we estimated the divergence time of each branch root
as summarized in Fig. 3. The result showed that gene duplica-
tion of the intra-gene family is concentrated around the early
period of vertebrate lineage. Prior to gene duplication of the
intra-gene family, geneduplication of theinter-genefamily seems
to have occurred.

B. Chromosomal L ocalization of Glycosyltransfer ase Genes

In vertebrate genomes it is often found that the homo-
logues of a cluster of genes form another cluster on a different
chromosome. Recent investigations have demonstrated that two
genome-duplication events occurred; one close to the origin of
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Tablel. Chromosomal location of glycosyltransferase genes.

Chromosome 1 6 9 19 2 12
al,3 FucTs FUTO (6g16) FUT7 (9934.3) FUT3,5,6 (19913.3)
B3GaTs B3Gal T2 (1g32-33) B3GalT4 (6p21.3) B3GNT2 (19) B3GalT1(2)
B3GNT1 (1)
B4GaATs B4GalT2 (1g32-33) B4GalT1 (9913.3)
B4Gal T3 (1g21-23)
ST3 ST3Gal5 (2)
ST6 ST6GaNAC5 (1q)
ST8 ST8Sial (12p12.1-p11.6)
B6GICNACT IGNT (6024-23) C2GnTL (9921)
Mgats Mgat4A (2912) Mgat4C (12921)
Mgat5A (2921)
GalNACTs GalNAC-T2 (1g41-42) GalNAC-T3 (2024-31) GalNAc-T4 (12021.3)
GalNAC-T6 (12q13)
others ABO (9q34) FUT1,2 (19p13.3) B4GalNACT (12q13.3)
Table 1 (Continued)
Chromosome 3 5 11 14 15 18 22 Others
al3FucTs FUT4 (11g21)
B3GaTs B3GalT3 (3g25) B3GaT5 (21022.3)
B4GaATs B4GaT4 (3q13) B4GalT6 (18q11) B4GaT5 (20g13.1)
ST3 ST3Gal4 (11923-q24) ST3Gal1 (8q24)
ST6 ST6Gal1(3027) ST6GalNACL (11)
ST8 ST8Sia2(5q21) ST8Sia2 (15026)
B6GICNACT C2GNnTM (15q21.3)
Mgats Mgatl (5935) Mgat2 (14921) Mgat3 (22913.1)
GalNACTs GalNACc-T1 (18q12-21) GalNACc-T7 (4931.1)
B3GNT iGNT (11913) LARGE (22012.3)

others 04GnT1(3q14.3) XGaTl (5935.1)

FUTS (14¢23)

04GXT (22¢13.2)

the vertebrates and the second close to the origin of the
gnathostomes (5). For example, the MHC paral ogous regions
were detected on chromosomes 1, 6, 9, and 19 . Genes of the
Hox cluster are mapped to chromosomes 2, 7, 12, and 17 (6).
These four regions may & so be the remnant of the four homolo-
gous segments that arose from the genome tetrapl oidization. We
detected that glycosyltransferase genes also show “homologous
clusters’ such asthe MHC region and Hox cluster. We listed up
the chromosomal location of glycosyltransferasesin Tablel. The
first line indicates chromosomal number. First, we picked up
the genes of glycosyltransferases on chromosomal regions cor-
responding to MHC clusters (Chr. 1, 6, 9, and 19) and Hox clus-
ters(Chr. 2,7,12, and 17). Five a1,3FucT genes, FucTlll, FucTV,
FucTVI, FucTVII, and FucTIX were placed in chromosomes 6,
9, and 19, while FucTIV was placed in chromosome 11. Four
[3Gal T genes were placed in chromosomes 1, 6, and 19, while
two B3GalT genes were placed in chromosome 3, and 21. We
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also placed B4GalTs, sialyltransferases, GICNACTs, GalNACTS,
and others. The Hox type grouping of chromosomes 2, 7,12,
and 17 did not include many glycosyltransferase genes, only
GlcNACcTs and GaNAcTs were concentrated on chromosome 2
and 12.

One would expect that if the subset of the genome was
duplicated, all the phylogenetic trees should indicate the same
topology. The phylogenetic trees of the glycosyltransferase gene
did not clearly indicate such an evolutionary history. For ex-
ample, the phylogenetic tree of a1,3FucT (Fig. 1) indicates that
the FucTIX (Chr. 6) diverged first, and then FucTIV (Chr. 11)
diverged from the group, FucTIlI (Chr. 19) and FucTVII (Chr.
9), by gene duplication. But the phylogenetic tree of 3GaT
(not shown) indicates that 33Gal T2 (Chr. 1) and B3Ga T3 (Chr.
3) are clustered, while b3Gal T4 (Chr. 6) diverged first. Thisis
not compatible with the hypothesis of homologous cluster. But
there is no reason to reject the hypothesis of the homologous
cluster, because no one knows which gene is the correct ho-
mologous gene with each other. For example, tandem duplica-
tions occurred in ancient chromosomes (ex. gene A and gene A’
on an ancestral chromosome). It had been maintained for along
time. During the periods, many of the tandem duplicates were
expected to occur to evolve different functions. Gene loss can
be expected only when further duplications (or genome dupli-
cation) occur (ex. A+A’ on Chr.1 and A+A’ on Chr.3). Geneloss
might occur randomly (ex. A’ on Chr.1 and A on Chr.3 had dis-
appeared). So the gene cluster of the phylogenetic treeisincon-
sistent with each other (7). Anyway, as shown in Table I, we can
predict the existence of novel cluster regions in chromosomes,
3, 5, 11, 14, 15, 18, and 22. It is possible that further
glycosyltransferase genes may be found and mapped on this
novel group. The timings of gene duplication that were esti-
mated by molecular evolutionary analyses (Fig. 3) were com-
patible with the period of genome duplication.

C. Estimation of Evolutionary Rates and Divergence Time
We calculated the numbers of synonymous (d.) and
nonsynonymous (d, ) nucleotide substitutions between human
and a rodent (mouse, chinese hamster, or rat) for each
glycosyltransferase gene (Fig. 4). Evolutionary rate (A) isrela-
tive to nucleotide substitutions. First we expected that the evo-
Iutionary rate depended on the glycosyltransferase family. In
other words, we expected the evolutionary rate of the enzymes
which synthesize core structure, to be slow and the evolutionary
rate of terminal sugar-transferase, such as fucosyltransferases
and a part of sialyltransferases, may be high. Contrary to this
expectation, glycosyltransferase genes have avariety of evolu-
tionary ratesin each family. Itisinteresting thet the gene FucTIX,
which indicated the lowest rate, and the gene FucTIIl and
FucTVI, which indicated the highest d, values, belong to the
same glycosyltransferase family. It is emphasized that the num-
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Tablell. Timing of gene duplications.

Divergence time

Invertebrate [J1.5BYA [J1.2BYA 800MYA 600-700MYA 80MYA
counterpart Eukaryote/  Plants/ Proteostomes/  Invertebrates/ \ertebrate Non-mammalian/
Prokaryote Metazoans Duoterostomes ~ Vertebrates linage Mammalian

al,2FucT - +

al,3FucT + + +(424~462)

o1,6FucT + +

B4GaT + *) +(817) +(782) +(463~563)

B3GaT + + +

al1,3GaT - +(485)

ST3 - +(468~568)

ST6 - +(1.9B) +(561)

ST8 - +(1.9B~2.1B) +(857)

B6GNT + +(~900) +(~500)

Mgatl + +(1.1B)

Mgat2 + +

Mgat3 + +

Mgat4 + +

Mgat5 + +

GalNACT + *) +

(*): GANACT have traces of similarity with the B4GalT motif. There isthe possibility that GANACT, 31,4GalT and XGal T diverged
from the same ancestral gene before the emergence of Deuterostomes.

bersof d valuesof FucTIX, b3GalT1 and GANACT7 genesare
as low as those of histone and actin genes (8).

The phylogenetic analyses revealed that the
glycosyltransferase increases their genes by gene duplication or
chromosomal duplication. Asaresult, glycosyltransferases have
avariety of evolutionary rates; some are very conserved, others
areless conserved. We estimated the numbers of ancestral genes
and duplication events. We also indicate the divergence time
estimated by the phylogenetic tree (Table I1). We also showed
whether invertebrate counterparts exist or not. a1,2FucT (H and
Segene), 01,3GaT/GaNACT (ABO), and STsdo not have in-
vertebrate counterparts. It is interesting that al1,2FucT and
01,3GaT/GalNACT are involved in the synthesis of a blood
group antigen. In other words, they can act at the “postcore”
(terminal) position of glycan. Sialic acids are also found on the
terminal or subterminal position. It suggests that these genes
appeared after the divergence of vertebrates and invertebrates,
or the rapid evolutionary rate prevents detection by homology
search. As shown in Fig. 3, the gene duplication of the intra-
gene family was concentrated around the early period of verte-
brate lineage. It seems reasonable to suppose that the
glycosyltransferase genes increased by chromosomal duplica-
tion in vertebrate lineage, after divergence of Duoterostomes
and Proteostomes.
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