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Quantification of ancient human intelligence has become possible with recent advances in polygenic prediction. Intelligence is a
complex trait that has both environmental and genetic components and high heritability. Large-scale genome-wide association
studies based on ~270,000 individuals have demonstrated highly significant single-nucleotide polymorphisms (SNPs) associated
with intelligence in present-day humans. We utilized those previously reported 12,037 SNPs to estimate a genetic component of
intelligence in ancient Funadomari Jomon individual from 3700 years BP as well as four individuals of Afanasievo nuclear family
from about 4100 years BP and who are considered anatomically modern humans. We have demonstrated that ancient individuals
could have been not inferior in intelligence compared to present-day humans through assessment of the genetic component of
intelligence. We have also confirmed that alleles associated with intelligence tend to spread equally between ancestral and derived
origin suggesting that intelligence may be a neutral trait in human evolution.

Journal of Human Genetics; https://doi.org/10.1038/s10038-022-01039-8

INTRODUCTION
Intelligence is a complex phenotypic trait that has a large genetic
component with high heritability [1]. Large-scale genome-wide
association studies (GWAS) indicate that prediction of intelligence
may be possible using genetic data [2]. The most powerful meta-
analysis of GWAS based on 269,867 individuals identified several
hundred genetic markers explaining up to 5.2% of variance in
intelligence [3]. The assessment of cognition in that study was UK
biobank fluid intelligence score derived from 13 questions
focusing on memory, logic, verbal and numeric reasoning [4].
The genetic markers have been reported in the form of single-
nucleotide polymorphisms (SNPs) spread across the whole human
genome in high association with bidirectional effect in form of Z-
score obtained through METAL software [5]. We have used those
SNPs in our analysis based on classical assumption of single-
nucleotide polymorphisms being the most common type of
genetic variation in human genome and present in at least 1% of
the global population [6].
Assessment of human intelligence and cognitive abilities is a

challenging task. One of the challenges is lack of clear-cut definition
of intelligence. Intelligence includes genetic and environmental
components providing humans with multiple capacities of proces-
sing new information, linguistic as well as mathematical abilities,
creativity that has been defined by more than two dozen
definitions by American Psychological Association [7].
Quantification of cognitive abilities is a historically controversial

issue. Intelligence quotient (IQ) tends to be a universal metric of
neuropsychological abilities like mental speed, decision making,
and problem-solving required for educational planning [8]. A large
cohort of other tests exist like Peabody Picture Vocabulary test (a
measure of children’s verbal intelligence) as well as scholarly

aptitude tests like Scholastic Aptitude Test for colleges or
Graduate Record Examination utilized by graduate schools in
the United States. Previous research has demonstrated that
performance on a subset of a particular test correlated with
results on other parts of the test [9].
Intelligence assessment in ancient people like Neanderthal and

Australopithecus has been attempted via medical imaging of
fossilized skulls. Medical imaging used to reconstruct brain volumes
of Australopithecus individuals living 3–4 million years (Myr) ago
confirmed that anatomically modern humans (AMHs) have on
average three times larger brain size [10]. Comparison of brain
volumes in early and late AMHs (living 300,000–10,000 years ago)
did not demonstrate significant difference in terms of total volume,
but rather confirmed more complex structure in cortical areas with
larger parietal lobe and cerebellum in more recent specimens [11].
The cortical areas more prominent in late AMH fossils compared to
early samples are largely responsible for development of social
tasks likely contributing to population growth and development of
language as early as 50,000 years ago [12].
An alternative approach to fossil analysis termed “neuroarch-

eology” has utilized brain imaging of modern humans engaged in
process of creating stone age tools in attempt to mimic ancient
human brain activity [13]. Brain activity recorded during knapping
of Acheulian handaxes dated ~1.75 Myr ago was significantly
different from brain activity involved in making Oldowan tools
dated about 2.6 Myr. Making more skillfully shaped Acheulian
tools required activation of complex neural circuitry similar to
brain activity observed during playing piano [14].
Anatomical measurements of brain structures, modeling

cerebellar blood flow, mathematical modeling of brain size—
body physiological parameters in ancient human species overall

Received: 20 February 2022 Revised: 18 April 2022 Accepted: 20 April 2022

1Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan. 2SAITOU Laboratory, National
Institute of Genetics, Mishima, Shizuoka 411-8540, Japan. ✉email: saitounr@nig.ac.jp

www.nature.com/jhg

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s10038-022-01039-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s10038-022-01039-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s10038-022-01039-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s10038-022-01039-8&domain=pdf
http://orcid.org/0000-0003-0533-9778
http://orcid.org/0000-0003-0533-9778
http://orcid.org/0000-0003-0533-9778
http://orcid.org/0000-0003-0533-9778
http://orcid.org/0000-0003-0533-9778
https://doi.org/10.1038/s10038-022-01039-8
mailto:saitounr@nig.ac.jp
www.nature.com/jhg


have demonstrated a trend of increasing brain sizes as well as
higher metabolic neuronal activity suggesting an upward rise of
human cognitive abilities in AMHs compared to Neanderthal and
Australopithecus [15, 16]
The aim of this study was to assess a genetic component of

intelligence in ancient individuals who are considered AMHs
through genome analysis. Intelligence as a complex trait has
likely been shaped by genetic variation in the course of
evolution. We utilized 12,037 SNPs distributed across entire
genome. Sex chromosomes weren’t included in our analysis since
none of the X-chromosome and Y-chromosome SNPs have not
reached the p value <5 × 10−8 threshold in the GWAS discovery
phase [3]. We applied the derived polygenic scores (PGS) to 5
ancient genomes from ancient individuals (Table 1) including
Funadomari Jomon individual discovered in Hokkaido, Japan
with high sequencing coverage and peak depth of 48x
(estimated age about 3700 years BP) [17]. Four other ancient
genomes data originated from a nuclear family of four—a
mother, a father, and their two sons from Afanasievo Culture
discovered in modern Russia, who lived about 4100 thousand
years BP (https://reich.hms.harvard.edu/datasets) [18].
Our analysis was aimed at elucidating a genetic component of

intelligence in late AMHs (largely originating within 10,000 years
ago) such as individuals from Jomon and Afanasievo cultures. The
reason for that is the GWAS summary statistics obtained from
present-day humans around the globe aligned to more archaic
genomes like Denisovans and Neanderthal has a high likelihood of
non-interpretable results due to considerable population diver-
gence time (up to 170,000–700,000 years between Denisovans
and present-day humans) [19]. We compared intelligence PGS
derived from genomic data of ancient individuals (considered as
AMHs) to 2504 present-day humans from the 1000 Genome
Project Phase 3 [20]. We also inferred absolute IQ scores for
ancient individuals compared to general population based on a
genetic component of intelligence.

METHODS
Selection of SNPs for polygenic scoring
Genetic markers of intelligence were obtained from a large-scale meta-analysis
of GWAS on cognitive abilities with 269,867 participants from 14 European
epidemiological cohorts [3]. Genome-wide significance (p< 5× 10−8) in
association with intelligence was confirmed for total number of 12,110 SNPs.
Polygenic risk score prediction demonstrated that around 5.2% variation in
intelligence can be explained by those SNPs. We estimated ancestral state of
the majority of SNPs associated with intelligence by multiple alignment of
reference genome of modern human (GRCH37) to bonobo, chimpanzee,
gorilla, orangutan, gibbon, and macaque using “Ortheus” method implemen-
ted in ENSEMBLE database [21]. Fisher’s exact test of independence was used
to assess any nonrandom association between ancestral state and effect on
intelligence (Table 2).

Calculating intelligence polygenic scores
We built PGS using 12,037 SNPs that reached genome-wide significance
(p < 5 × 10−8) in the GWAS summary statistics. We utilized publicly

available datasets from 1000 genome project phase 3 data (2504
individuals across global 26 populations) to construct PGS for each
individual. The Funadomari Jomon genome sequence was selected for
analysis due to high sequencing coverage (peak depth of 48x) considered
as “the reference Jomon genome”. Four ancient European genomes with
high-quality sequence belonging to Afanasievo culture were used for
comparison as well (Table 1). Although the intelligence-associated SNPs
have been identified in European populations we proceeded with
evaluation of genetic component of intelligence in above mentioned
ancient high-quality genomes in spite of estimated age of 3900–4100 BP.
We used PLINK version 1.9 [22] and R version 4.0.2 [23] to compute

intelligence PGS. Data visualization was done through ggplot2 implemen-
ted in R [24]. Genetic intelligence scores were obtained by summing up the
GWAS meta-analysis output beta regression coefficients identified for
effective alleles in independent UK Biobank data subset for educational
attainment replication. Each subject score was calculated as a sum of SNP
effects considering number of effect allele presence (0, 1, or 2) multiplied
by reported beta regression coefficients using polygenic risk score
calculation [25].
We calculated genetic component of intelligence by constructing PGS

through a linear model for each individual of the study cohort. Intelligence
PGS PGS for each individual was defined in the form of:
PGS ¼ β1x1 þ β2x2 þ ¼ þ βkxk þ βnxn , where βk represents per-allele

beta coefficient of logistic regression for intelligence at SNP k, and xk based
on allele dosage of 0, 1, or 2 for SNP k with total n number of SNPs
included in PGS.
We used two subsets of SNPs from total 12,037 SNPs for PGS derivation:

one set comprised of 9128 SNPs (p value threshold p < 5 × 10−8) as well as
a smaller set of 1402 SNPs (p value threshold p < 4 × 10−11) replicated in an
independent UK Biobank cohort and having top association in the original
GWAS study. We decided to build two PGS based on different threshold of
p values for SNPs reported in the original GWAS study according to
generally accepted guidelines on performing PGS analysis through
comparison of PGS and absolute IQ scores for ancient genomes to
present-day humans [26]. Functions for calculating PGS and data
visualization are available as R scripts on GitHub (https://github.com/
Kays3/Ancient_intelligence.git).

Statistical inference
The overall PGS of the intelligence data was tested for normality
(Shapiro–Wilks’s test) and plotted assuming normal distribution. PLINK
version 1.9 was used to extract the genotype data calculating eigen-
values for principal component analysis (PCA), and building matrixes for
computing genetic intelligence scores for each subject. Population
structure demonstrated by PCA was built based on subset of 9128 SNPs
and 1402 SNPs shared by modern and ancient human genomes. We also
inferred absolute values of IQ for ancient individuals based on PGS results
and compared them to a general human population mean of 100
and standard deviation (SD) of 15 [27] using open-access software
designed for translating PGS into relevant absolute values of phenoty-
pical traits [28].

RESULTS
We have built genotypes based on 12,037 SNPs highly associated
with intelligence from genome sequences of 2504 individuals
from 1000 Genome Project Phase 3. We also constructed two sets
of genotypes comprised of 9148 SNPs and 1402 SNPs for genomes
of Funadomari Jomon individual, Afanasievo family of four
individuals as well as 1000 Genome Project subjects. Intelligence
PGS constructed for total 2509 individuals were tested for

Table 1. Ancient genomes used for polygenic estimation of
intelligence

Sample name Average
coverage

Reference

Funadomari Jomon 48x Kanzawa-Kiriyama
et al. [16]

Afanasievo mother 21.2x Wohns et al. [17]

Afanasievo father 25.3x Wohns et al. [17]

Afanasievo son1 10.8x Wohns et al. [17]

Afanasievo son2 25.8x Wohns et al. [17]

Table 2. Ancestral state analysis of SNPs associated with intelligence

Ancestral state Total

Ancestral Derived

Regression direction

Positive 2542 3333 5875

Negative 2490 3262 5752

Total 5032 6595 11,627
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normality using Shapiro–Wilk test. Intelligence PGS were indeed
normally distributed (W= 0.99964, p value= 1.22 × 10−5).
The PGS of intelligence based on highly significant 1402 SNPs

(p value threshold p < 4 × 10−11) demonstrated Funadomari
Jomon individual’s value within 1 SD above population mean
of 1000 Genome Project (z= 0.34), while Afanasievo mother had
a score lower than 2 SD of the mean (z=−2.94), Afanasievo
father score was also below 2 SD from the mean (z=−1.77).
Afanasievo sons scores were located between the maternal and
paternal values where Son1 had a score of z=−2.36 and Son2
z=−2.88 (Fig. 1A).
The PGS of intelligence based on 9128 SNPs (p value threshold

p < 5 × 10−8) placed Funadomari Jomon individual within 1 SD
below population mean of 1000 Genome Project (z=−1.29),
while Afanasievo mother had score lower than 2 SD of the mean
(z=−3.59), Afanasievo father score was below 1 SD from the
mean (z=−2.03). Afanasievo sons scores were located between
the maternal and paternal scores where Son1 score z=−2.44 and
Son2 with z=−2.99 (Fig. 1B).
Absolute IQ score inference based on variance explained by

intelligence PGS (5.2%) with mean of the trait of 100 and SD of 15
demonstrated following scores for ancient individuals: for the
1402 SNPs PGS Funadomari Jomon individual IQ= 101 (95% CI=
72.58–129.74), while Afanasievo mother’s IQ= 89 (95% CI=
60.96–118.12), Afanasievo father IQ= 94 (95% CI= 65.2–122.36).
Afanasievo sons scores were located between the maternal and
paternal scores where Son1’s IQ= 92 (95% CI= 63.17–120.3) and
Son2’s IQ= 90 (95% CI= 61.54–118.7) (Fig. 2A).

Absolute IQ score estimates for PGS based on 9128 SNPs
demonstrated Funadomari Jomon individual’s IQ= 95 (95% CI=
66.88–124.04), while Afanasievo mother’s IQ= 87 (95% CI=
57.96–115.12), Afanasievo father IQ= 93 (95% CI= 64.3–121.46).
Afanasievo sons scores were similarly located between the
maternal and paternal scores where Son1 had IQ= 91 (95%
CI= 62.87–120.02) and for Son2: IQ= 89 (95% CI= 60.96–118.12)
(Fig. 2B).
PCA based on 1402 SNPs demonstrated close genetic relation-

ships between ancient Funadomari Jomon individual to modern
East Asian populations while Afanasievo family individuals
clustered with modern European populations from the 1000
Genome Project (Fig. 3A). PCA based on 9128 SNPs did not reveal
any clear population structure with Funadomori Jomon individual
clustered in proximity to East Asian populations compared to
Afanasievo family (Fig. 3B).
We assessed ancestral state of 12,037 SNPs used for PGS

construction in 1000 Genome Populations through alignment with
six primate genomes including bonobo, chimpanzee, gorilla,
orangutan, gibbon, and macaque using “Ortheus” method imple-
mented in ENSEMBLE database [21]. The alignment results between
ancestral species and GWAS summary statistics used for polygenic
scoring was available only for 11,627 SNPs (96.6%) accessible from
ENSEMBLE database. SNPs contributing to positive effect and
negative effect on intelligence demonstrated no association with
derived state (p value= 0.985, OR with 95% CI= 1.00 [0.93–1.10])
based on Fisher exact test (Table 2). Ancestral state analysis of SNPs
highly associated with intelligence did not demonstrate any

Fig. 1 Intelligence polygenic scores in ancient individuals compared to modern humans. A PGS based on top significant 1402 SNPs out of
12,110 total SNPs (p value threshold p < 4 × 10−11) Afanasievo Mother z=−2.94, Afanasievo Son1. z=−2.36, Afanasievo Son2 z=−2.88,
Afanasievo Father z=−1.77. Intelligence polygenic scores in Afanasievo individuals observed within 3 standard deviations (SD) from the
mean of 1000 Genome Populations while Funadomari Jomon individual is above the mean, z= 0.33. B Funadomari Jomon individual,
Afanasievo individuals PGS based on 9148 out of 12,110 total SNPs (p value threshold p < 5 × 10−8) extracted in common with 1000 Genome
Populations. Afanasievo Mother z=−3.59, Afanasievo Son1 z=−2.45, Afanasievo Son2 z=−2.99, Afanasievo Father z=−2.04. Intelligence
polygenic scores in Afanasievo individuals fell within 3 SD from the mean of 1000 Genome Populations while Funadomari Jomon individual is
within 2 SD below the mean, z=−1.29
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significant differences suggesting that genomic regions contribut-
ing to intelligence PGS are present not only in modern humans, but
in primates as well.

DISCUSSION
We have demonstrated first ever insight into genetic component
of intelligence through PGS in ancient individuals from around
3700–4100 BP. The performed calculations indicate a possibility
that people living on the territory of modern Hokkaido and Russia
in that period being not less intelligent than modern humans.
Absolute IQ values inferred from PGS in Afanasievo individuals
and Funadomari Jomon individual tends to be within the 95%
range of mean general human population suggesting similarity of
intelligence of humans living 3700 BP and modern humans.
Although intelligence PGS of Afanasievo family tend to fluctuate
on the lower tail of normal distribution of the scores of 1000
Genome project these scores translate to absolute IQ values
within mean of general population given the low variance
explained by intelligence PGS (R2= 5.2%).
We used two different p value thresholds for constructing PGS

of intelligence, since there is no clear consensus on how selection
of SNPs may affect the predictive power of the analysis. Previous
work on PGS of intelligence demonstrated that different thresh-
olds may actually have association with particular aspects of
cognition like memory or verbal intelligence [29].

Previous studies on PGS prediction confirmed lower applic-
ability and reproducibility of the majority of GWAS reported in
global populations due to the fact that most data used in the
discovery phase came from people of European descent [30, 31].
However, recent development in derivation of absolute trait
values from PGS confirmed potential clinical utility and rationale
of polygenic prediction in context of complex traits and clinical
decision making [32, 33].
Even though there is a possibility that SNPs associated with

cognition may have lower predictive abilities when applied to
non-Europeans, there have not been any other studies reporting
intelligence prediction of ancient individuals through genetic data
to our knowledge. This analysis is an example of application of
GWAS findings toward assessment of cognitive abilities in
individuals living around 4000 years ago. Previous studies on
polygenic prediction of height as well disease risk in ancient DNA
confirmed similar predictive power in ancient humans to modern
individuals [34, 35].
Modern concept on intelligence measured by IQ holds on

principle of dual contribution of genetic and environmental
components (socioeconomic aspects, medical care) forming
essential cognitive functions. IQ measures have been implicated
with survival, adaptation to environment, and mental functioning
[8]. Digital genomic biobank DNA.Land as well as various genetic
applications like GenePlaza, 23andMe previously reported poly-
genic prediction of a number of complex traits including

Fig. 2 Absolute IQ values inferred from intelligence polygenic scores in ancient individuals compared to modern humans. A Absolute IQ
values inference based on variance explained by intelligence polygenic score build from 1402 SNPs (p value threshold p < 4 × 10−11)
demonstrated Funadomari Jomon individual’s IQ= 101 (95% CI= 72.58–129.74), while Afanasievo mother’s IQ= 89 (95% CI= 60.96–118.12),
Afanasievo father IQ= 94 (95% CI= 65.2–122.36). Afanasievo sons scores were located between the maternal and paternal scores where
Son1 score had IQ= 92 (95% CI= 63.17–120.3) and Son2 IQ= 90 (95% CI= 61.54–118.7). Variance explained by intelligence polygenic score
(R2= 5.2%), mean IQ= 100 with SD= 15 (95 % CI= 71.42–128.58) in modern human general population. B Absolute IQ values inference based
on variance explained by intelligence polygenic score build from 9128 SNPs (p value threshold p < 5 × 10−8) demonstrated Funadomari Jomon
individual’s IQ= 95 (95% CI= 66.88–124.04), while Afanasievo mother’s IQ= 87 (95% CI= 57.96–115.12), Afanasievo father IQ= 93 (95% CI=
64.3–121.46). Afanasievo sons scores were similarly located between the maternal and paternal scores where Son1 had IQ= 91 (95% CI=
62.87–120.02) and for Son2: IQ= 89 (95% CI= 60.96–118.12)
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intelligence based on GWAS findings [36, 37]. Although the
predictions have the potential to elucidate individual traits in
comparison to massive digital databanks, a small percent of
genetic contribution to the traits is still the most important
limiting factor in wider applicability of any predictions [38].
DNA.Land platform has previously demonstrated evaluation of

intelligence PGS using GWAS findings based on 72 SNPs [2]. The
variance of intelligence explained by polygenic scoring in DNA.
Land study was about 4.8%. Although 12,110 SNPs we used in our
study only explain about 5.2% variance in intelligence through
PGS, large number of those SNPs have been mapped to protein
coding and non-coding DNA elements highly associated with
cognitive functions and mental disorders [3]. Likely such a modest
increase in predictive power of intelligence based solely on

genetic factors suggests a need for alternative intelligence
prediction tools incorporating environment and socioeconomic
factors.
A common approach in studying quantitative traits like

intelligence in humans has been based on monozygotic and
dizygotic twins [39]. Previous studies on three-dimensional brain
mapping in twins supported correlation between gray-matter
volumes in genetically identical twins and high heritability for
brain areas responsible for IQ, speech, and language [40, 41]. High
heritability of intelligence has also been criticized due to overlap
of cognitive ability measurements with various factors like
presence of IQ statistics, socioeconomic influence, and other
environmental influences [42].
Intelligence as a phenotypic trait with underlying effects of DNA

polymorphism has been likely shaped by evolutionary processes.
Majority of mutations in genes affecting underlying cognition
used in this study tend to interact in extremely complex networks
with higher activity in hippocampal as well as somatosensory
neurons [3]. Since not only humans, but primates have active
neurogenesis in those brain areas [43] we hypothesize that
genetic contribution to intelligence through mutations are shared
to some extent with human ancestral species. High abundance of
shared SNPs related to intelligence in primates and humans
observed in our study may suggest that most mutations in
genomic regions associated with intelligence of ancient humans
and their ancestors are in line with neutral theory of evolution
[44]. We have demonstrated conserved state of half of causative
SNPs in primates and humans (Table 2). Since the ancestral state
inference was done in relation to primates, there is no clear
boundary between alleles contributing to higher intelligence
being more common in modern humans than in ancestral species.
We demonstrated that genomic data from ancient individuals

can be used to evaluate a genetic component of intelligence.
Funadomari Jomon as well as Afanasievo family individuals
demonstrated intelligence PGS as well as IQ scores in line with
modern humans. DNA evidence may indicate a possibility of
intelligence being a neutral trait in human evolution suggesting
that ancient individuals living 3700–4100 years BP could have
been as intelligent as modern humans.
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