遺伝子からみた
人類集団の近縁関係
—最近の研究を中心に—
斎藤成也

世界中に散らばるさまざまな人類集団を、遺伝的な違いをもとにして比較しようという試みは、ABO血型の研究から始まる。その後、あらたに発見されたRh系やMN系なども加えた血液型の調査が世界中の集団で行われようになった。これらのデータをもとに、スタンフォード大学のキャヴァリースフォルザら（1964）は、人類集団間の関係図をつくり、それを世界地図に重ね合わせて、人類の移住ルートを推定した（図1）。図1ではニュージーランドのマオリ人があたかもアラスカあたりから移動したように描かれているが、これをありえないこととして、彼らの研究を強く批判する声もあったらしい。

一方、1960年代になって、血液型と異なり、遺伝子の直接産物であるタンパク質のわずかな差を、比較的容易に調べられる電気泳動法が集団遺伝学的研究所によく用いられるようになった。これららのデータの分析から、三大人種のうちモンゴロイドとコースワインド（いわゆる非人）が近く、ネグロイド（いわゆる黒人）はこれからよりも少し遠い傾向にあることがわかった。新しいデータを加えたその後の研究でも、同様の関係が推定されている。とくにテキサス大学の根井とリフシェッツ（1989）は、血液型からDNAマーカーにおよぶ186種の遺伝子座のデータを分析して、モンゴロイドとコースワインドの遺伝距離が、ネグロイドとこれら二人種との間の遺伝距離よりも統計学的に有意に小さいことを初めて示した（表1参照）。遺伝距離とは集団間の遺伝的な違いを定量的にあらわす尺度であり、遺伝子頻度が異なるほど遺伝距離は大きくなる。根井の遺伝距離がよく使われている。最近、キャヴァリースフォルザら（1988）が38の人類集団から集めた遺伝子頻度データ（血液型、タンパク質、HLA、Gm、味覚等を含む）をもとに類似的解析を行い、三大人種の分化順序に関して根井らと同じ結論に達している（図2）。すなわち、アフリカのネグロイド
ドと他の人類集団が最初に分岐している。したがっ
て、少なくとも遺伝子からみた三大人種の近縁関係
については、コンセンサスが得られたといってよっ
ろ。
図2の系統樹は、遺伝子の進化速度を一定と仮定す
るUPGMAという方法でつくられている。この系
統樹では、モングロイドは大きく二つのグループに
分けられている。一つはヨーロッパとともに、北
ユーラシアグループを構成している。このグループ
には、日本人、韓国人などのほかに、南米・北米の
モンゴロイド（アメリカのインディアンという意味
でアメリカ人と呼ぶことがある）も含まれる。もう
一つのグループには東南アジアや太平洋の島々の集団
が含まれ、バブア人やオーストラリア原住民（オポリ
ジニー）と近縁である。この後者のグループは、ヨー
ロッパと呼ばれており、モンゴロイドが生じてから以前
に分岐したと推定されているが、本当はそうであろ
うか。このグループには、日本人と地理的に近く、関かたちが似
通った中国南部人や東南アジア人が含まれている。
彼らよりもヨーロッパのヨーロッパの方が東アジア
人に近縁であるとは、いかに信じがたい。

キャヴァリースフォルザラ（1988年）は、遺伝子頻度デー
ータから推定した根拠の遺伝距離と、考古学的デー
タに基づく集団の分岐年代を比較している（表2）。
モンゴロイドと非モンゴロイドの分岐年代（92,000年；図2
の点1）、イスラエルのカファゼー洞窟遺跡の年代
が使われ、モンゴロイドと（東南アジア人＋アメリカ
ン）の分岐年代（35,000年；図2の点3）は、ヨーロッパ
においてネアンデルタール人が消滅し、新人の出現
した年代が使われている。一方、オーストラリアへ
の進出は少なくとも4万年前と考えられている
ので、これをオーストラリア（バブア人とオポリ
ジニーの総称）と東南アジア人の分岐年代の下限に
採用している（図2の点2）。また、人類の新大陸への
進出は、新しいデータ（チリのモンテ・ベルデ遺跡）
によると33,000年前にさかのぼることが、定説では
もっと最近だと考えられているので、東南アジア人
とアメリカンの分岐（図2の点4）、北アメリカと中
央・南アメリカの分岐（図2の点5）をともに15,000
−35,000年前としている。

遺伝子の変化する速度が一定であるとすれば、表
2のG/T比（遺伝子距離Gを分岐年代Tで割ったもの）

<table>
<thead>
<tr>
<th>表1. 三大人種間の遺伝距離</th>
<th>Nei & Livshits（1989）より。</th>
</tr>
</thead>
<tbody>
<tr>
<td>系統</td>
<td>遺伝子座の数</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>タンパク質</td>
<td>84</td>
</tr>
<tr>
<td>血液型</td>
<td>33</td>
</tr>
<tr>
<td>HLAとGm</td>
<td>8</td>
</tr>
<tr>
<td>DNAマーカー</td>
<td>61</td>
</tr>
<tr>
<td>総計</td>
<td>186</td>
</tr>
</tbody>
</table>

C: ヨーロッパ、M: モンゴロイド（アジア人）、
N: オーストラリア（オポリジェニー）。
* 3％水準、** 1％水準で、有意に他の遺伝距離よりも小さい。

| 表2. 遺伝距離と考古学から推定された分岐年代の比較 |
|---|---|---|---|---|
| 番号 | 集団の組合せ | 遺伝距離（G） | 分岐年代（T） | G/T比 |
| 1 | ネモンゴロイド/非モンゴロイド | 29.7±6.8 | 92 | 0.32 |
| 2 | オーストラィオイド/東南アジア人 | 18.4±3.4 | 40 | 0.46 |
| 3 | コーカソイド | 16.6±3.5 | 35 | 0.47 |
| (東南アジア人＋アメリカン) | | | | |
| 4 | 北東アジア人/アメリカン | 12.1±1.8 | 15−35 | 0.81−0.12 |
| 5 | 北アメリカ人/中央・南アメリカ人 | 4.2±1.0 | 15−35 | 0.28−0.07 |

Gは根拠の遺伝距離×1,000とその標準誤差、Tの単位は千年。
はどの集団の組み合わせでも同一になるはずである。
キャヴァリースフィルダーは、まだあやふやな新大陸の考古学的データに基づく点4.5を除く3点の比がほぼ0.4前後になっているとし
る。この結論をただちに受け入れるわけではない。たとえ
これら考古学的な分析を含む推定値が正しいとしても、
それらの結論が何らかのデータに基づいたものであるか
については、研究者間で見解の相違がありえるからで
ある。また、すでに疑問を投げかけた点だが、図2の
系統樹そのもののが推定よりも誤りが含まれている可能性
を考えられる。さらに、この系統樹作成の基礎となる
データである遺伝距離の推定には142個の遺伝子座が
使われているが、集団によってデータに欠損がある
という記述もあらわれている。遺伝距離を
用いた分析では、一般にはこのようなデータは危なく
是有効なデータを扱わないものである。

数年前に、根井とロイチェザーリー(1982)が
遺伝子多型データに関する同様の分析を行い、18
集団の系統樹を提案している(図3)。ここでは、血液
型とタンパク質23遺伝子座のデータが使われている。
今度は図2の場合と異なり、中国人、日本人をはじめ
とするアジア・太平洋のモンゴロイド集団がキャヴァ
リの根をもとにして、その外側に南北アメリカ
の集団が、さらにその外側にオーストラライド
が位置する。一般に、アメリカはアジアのモン
ゴロイドと近い関係にあると信じられているが、その
見解とは異なる系統樹が得られたわけではない。この
理由として、アメリカの祖先がユーラシアから
新大陸へと移動していったときに、集団の大きさ
が一時的に著しく減少した可能性が考えられる。
これによって短期間に遺伝子多型の顕著な変化が生
じるのである。

遺伝距離は遺伝子多型の変化を計
算されるので、同じ時に同じ集団をを集めたと
考えると、遺伝距離は小さく、集団間の遺伝距離
は大きくなることが指摘されており、人類集団の分
化の大きな短期間に起こる遺伝子の変化速度には、
集団の大きさも関係するのである。

こうなってくると、遺伝距離を推定しても、進化
速度一定を仮定したUPGMAのような系統樹作成

図2、図3作成のための遺伝距離データをもとに、遺伝子多型の異方性を考慮した集団間の系統樹を

図4、図3作成のための遺伝距離データをもとに、遺伝子多型の異方性を考慮した集団間の系統樹を
法を用いていたのでは、正しい系統樹が得られない可能性が出てくる。斎藤と木村（1987）は、進化速度が系統によって異なる場合でも系統関係を正しく推定できる新しい方法を開発し、「近隣関係法」と名づけた。UPGMAと異なり、近隣関係法は共通祖先集団の位置が特定されていないので、樹状図（デンドログラム）ではなく、網状図（ネットワーク）が得られる。このような図を系統樹と呼ぶことにする。

近隣関係法の図3と同一の遺伝距離データに適用して図4を得た。ここでは、新大陸のモンゴロイ3集団が一致し、日本人（J）と中国人（C）を含むアジア・太平洋の集団とさらにつながっている。これららのグループにオーストラロイドがつくって、そこからコーカソイドへとつながってゆく。興味深いことに、北欧のラップ族人はコーカソイドとモンゴロイドの中間に位置している。そして、コーカソイドのグループはモンゴロイドとネグロイドにはさまれた格好になっている。最近われわれは遺伝結合法を用いてHLA遺伝子のデータを分析し、図4に類似した類縁図を得た（図5a）。また、図5bは、同じくHLA遺伝子のデータだが、中国の漢族・少数民族を中心にとする東アジアの集団の類縁図である。ここには大きくなり南北二群がみとめられるが、日本人中国北方の集団と遺伝的に近くなっている。くわしくは、徳永と斎藤（1988遺伝42巻10号）を参照されたい。

筆者は、この遺伝結合法をはじめとしたさまざまな系統樹作成法を用いて、遺伝子のデータから人類集団の系統樹・類縁図を推定したいと計画している。こうして得られる系統樹は、他の研究分野とも関わりの深い問題である、集団間の分岐年代の推定の基礎ともなるものである。

図5、HLA遺伝子のデータから、遺伝結合法を用いて作成した集団間の類縁図。（a）世界の25集団、（b）東アジアの18集団。徳永と斎藤（1988）より。